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Abstract. We study the conditions for families of fringe or non-fringe subtrees to
exist with high probability (whp) in T gw

n , a Galton-Walton tree of size n. We first
give a Poisson approximation of fringe subtree counts in T gw

n , which permits us
to determine the height of the maximal complete r-ary fringe subtree. Then we
determine the maximal Kn such that every tree of size at most Kn appears as a
fringe subtree in T gw

n whp. Finally, we show that non-fringe subtree counts are
concentrated and determine, as an application, the height of the maximal complete
r-ary non-fringe subtree in T gw

n .

1. Introduction

In this paper, we study the conditions for families of fringe or non-fringe subtrees
to exist whp (with high probability) in a Galton-Walton tree conditional to be of size
n. In particular, we want to find the height of the maximal complete r-ary fringe
and non-fringe subtrees. We also want to determine the threshold kn such that all
trees of size at most kn appear as fringe subtrees. In doing so, we extend Janson
(2016) result on fringe subtrees counts and prove a new concentration theorem for
non-fringe subtree counts.

Let T be the set of all rooted, ordered, and unlabeled trees, which we refer to as
plane trees. All trees considered in this paper belong to T. (See Janson, 2012, sec.
2.1 for details.)

Given a tree T P T and a node v P T , let Tv denote the subtree rooted at v. We
call Tv a fringe subtree of T . If Tv is isomorphic to some tree T 1 P T, then we write
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T 1 “ Tv and say that T has a fringe subtree of shape T 1 rooted at v, or simply T
contains T 1 as a fringe subtree.

On the other hand, if Tv can be made isomorphic to T 1 by replacing some or
none of its own fringe subtrees with leaves (nodes without children), then we write
T 1 ăTv and say that T has a non-fringe subtree of shape T 1 rooted at v, or simply
T contains T 1 as a non-fringe subtree. (Note that T 1 “ Tv implies that T 1 ă Tv.)
We also use the notation T 1 ăT to denote that T has a non-fringe subtree of shape
T 1 at its root.

Let ξ be a non-negative integer-valued random variable. The Galton-Watson
tree T gw with offspring distribution ξ is the random tree generated by starting
from the root and independently giving each node a random number of children,
where the numbers of children are all distributed as ξ. The conditional Galton-
Watson tree T gw

n is T gw restricted to the event |T gw| “ n, i.e., T gw has n nodes.
The comprehensive survey by Janson (2012) describes the history and the basic
properties of these trees.

In the study of conditional Galton-Watson trees, the following condition is as-
sumed throughout the paper:

Condition A. Let T gw
n be a conditional Galton-Watson tree of size n with offspring

distribution ξ, such that Eξ “ 1 and 0 ă σ2 :“ Var pξq ă 8. Let T gw be the
corresponding unconditional Galton-Watson tree.

We summarize our notation:

¨ T — the set of all rooted, ordered and unlabeled trees (plane trees)
¨ T — a tree in T
¨ Tv — a fringe subtree of T rooted at node v P T
¨ ξ — a non-negative integer-valued random variable with Eξ “ 1 and 0 ă σ2 :“

Var pξq ă 8
¨ pi — P tξ “ iu
¨ h — the span of ξ, i.e., gcdti ě 1 : pi ą 0u
¨ T gw — an unconditional Galton-Watson tree with offspring distribution ξ
¨ T gw

n — T gw given that |T gw| “ n
¨ T gw

n,v — a fringe subtree of T gw
n rooted at node v P T gw

n

¨ T gw
n,˚ — a fringe subtree of T gw

n rooted at a uniform random node of T gw
n

¨ pTnqně1 — a sequence of trees
¨ Tn — the set of all trees of size n
¨ S — a set of trees
¨ T`ďn — the set tT P T : |T | ď n,P tT gw “ T u ą 0u
¨ pAnqně1 — a sequence of sets of trees
¨ NSpT gw

n q — the number of fringe subtrees of T gw
n that belong to S

¨ πpSq — P tT gw P Su
¨ Nnf

T pT gw
n q — the number of non-fringe subtrees of T gw

n of shape T
¨ πnf pT q — P tT ă T gwu, the probability that T gw has a non-fringe subtree T at

its root

Remark 1.1. If p1 “ 0, then there exist positive integers n such that P t|T gw| “ nu
“ 0. For such n, T gw

n is not well-defined. But it is easy to show that P t|T gw| “ nu
ą 0 for all n ě n0 with n ´ 1 ” 0 pmod hq, where h is span of ξ and n0 depends
only on ξ (Janson, 2012, cor. 15.6). Therefore, in this paper, for all asymptotic
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results about T gw and T gw
n , the limits are always taken along the subsequence

with n´ 1 ” 0 pmod hq.

Extending a result by Aldous (1991), Janson (2012, thm. 7.12) proved the fol-
lowing theorem:

Theorem 1.2. Assume Condition A. The conditional distribution LpT gw
n,˚ |T gw

n q

converges in probability to LpT gwq. In other words, for all T P T, as nÑ8,

NT pT gw
n q

n
“ P

 

T gw
n,˚ “ T |T gw

n

( p
ÑP tT gw “ T u . (1.1)

Later Janson (2016) strengthened the above result, proving the asymptotic nor-
mality of NT pT gw

n q by studying additive functionals on T gw
n (Janson, 2016).

A natural generalization of NT pT gw
n q is the fringe subtree counts NTnpT gw

n q

where Tn P T is a sequence of trees instead of a fixed tree T . Let Popλq denote a
Poisson random variable with mean λ. We have:

Theorem 1.3. Assume Condition A. Let πpT q :“ P tT gw “ T u and let kn Ñ
8, kn “ opnq. Then

sup
T :|T |“kn

dTV pNT pT gw
n q,PopnπpT qqq “ O

´

pknmaxk
3{2
n

¯

“ op1q, (1.2)

where pmax :“ maxiě0 pi and dTV p ¨ , ¨ q denotes the total variation distance. There-
fore, letting Tn be a sequence of trees with |Tn| “ kn, we have as nÑ8:

(i) If nπpTnq Ñ 0, then NTnpT gw
n q “ 0 whp.

(ii) If nπpTnq Ñ µ P p0,8q, then NTnpT gw
n q

d
Ñ Popµq.

(iii) If nπpTnq Ñ 8, then

NTnpT gw
n q ´ nπpTnq
a

nπpTnq

d
ÑNp0, 1q,

where Np0, 1q denotes the standard normal distribution, and
d
Ñ denotes

convergence in distribution.

Theorem 1.3 can be partially generalized as follows:

Theorem 1.4. Assume Condition A. Let Tkn be the set of all trees of size kn,
where kn Ñ 8 and kn “ opnq. For S Ď Tkn , let πpSq :“ P tT gw P Su and
NSpT gw

n q :“
ř

vPT gw
n

JT gw
n,v P SK. Therefore, letting pAnqně1 be a sequence of sets

of trees with An Ď Tkn , we have:

(i) If nπpAnq Ñ 0, then NAnpT gw
n q “ 0 whp.

(ii) If nπpAnq Ñ µ P p0,8q, then NAnpT gw
n q

d
Ñ Popµq.

(iii) If nπpAnq Ñ 8, then

NAnpT gw
n q ´ nπpAnq
a

nπpAnq

d
ÑNp0, 1q.

(iv) If πpAnq{πpTknq Ñ 0, then

lim
nÑ8

dTV pNAnpT gw
n q,PopnπpAnqqq “ 0.

Remark 1.5. NSpT gw
n q can also be interpreted as the number of fringe subtrees

with certain properties. For example, NTkpT gw
n q is the number of fringe subtrees

of size k. The above theorem together with Lemma 2.4 shows that, as long as
kn “ opn3{2q then we have a central limit theorem for NTkn

pT gw
n q.
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The proof of Theorem 1.3 is given in Section 3. It uses many ingredients from
previous results on fringe subtrees, especially from Janson (2016). In particular,
Lemma 6.2 of Janson (2016) makes the computation of the variance of NTkpT gw

n q

quite easy, which is crucial for the proof.
However, this approach cannot be adapted to prove the convergence of total

variation distance for NAnpT gw
n q in (iv) of Theorem 1.4 without assuming that

πpAnq{πpTknq Ñ 0. In particular, it does not work for NTkn
pT gw
n q, i.e., the number

of fringe subtrees of size kn. Therefore, to show (i)–(iii) of Theorem 1.4, we instead
compute the factorial moments of NAnpT gw

n q. We sketch the proof of the theorem
at the end of Section 3.

Binary search trees and recursive trees are also well-studied random tree models
(see Drmota (2009)). Many authors have found results similar to Theorem 1.3 for
these two types of trees, see, e.g., Feng et al. (2008); Fuchs (2008); Devroye (1991,
2002/03); Flajolet et al. (1997). For recent developments, see Holmgren and Janson
(2015).

We say that a tree T is possible if P tT gw “ T u ą 0. As an application of
Theorems 1.3 and 1.4, we ask the following question — when does T gw

n contain
all possible trees within a family of trees (possibly depending on n). As shown in
Subsection 4.1, this is essentially a variation of the coupon collector problem.

In Subsection 4.2 we answer the above question for the set of complete r-ary trees.
Let Hn,r be the maximal integer such that T gw

n contains all complete r-ary trees
of height at most Hn,r as fringe subtrees. Lemma 4.2 shows that Hn,r ´ logr log n
converges in probability to an explicit constant.

Let T`
ďk be the set of all possible trees of size at most k. Let Kn “ maxtk :

T`
ďk Ď YvPT gw

n
T gw
n,v u, i.e., Kn is the maximal k such that every tree in T`

ďk appears
in T gw

n as fringe subtrees. In Subsection 4.3, we show that, roughly speaking, if the
tail of the offspring distribution does not drop off too quickly, Kn{ log n converges in

probability to a positive constant. Otherwise, we have Kn{ log n
p
Ñ 0. For example,

for a random Cayley tree, we have Kn log logpnq{ logpnq
p
Ñ 1. For many well-known

Galton-Watson trees, we also give the second order asymptotic term of Kn.
Non-fringe subtrees are more complicated to analyze. However since on aver-

age fringe subtrees in T gw
n behave like unconditional Galton-Watson trees when

n is large, the number of non-fringe subtrees of shape T should be more or less
nP tT ă T gwu. The following theorem is a precise version of this intuition.

Theorem 1.6. Assume Condition A. Let πnf pT q :“ P tT ă T gwu. Let Nnf
T pT gw

n q

:“
ř

vPT gw
n

JT ă T gw
n,v K. Let Tn be a sequence of trees with |Tn| “ kn where kn Ñ 8

and kn “ opnq. We have

(i) If nπnf pTnq Ñ 0, then Nnf
Tn
pT gw
n q

p
Ñ 0.

(ii) If nπnf pTnq Ñ 8, then Nnf
Tn
pT gw
n q{pnπnf pTnqq

p
Ñ 1.

Chyzak et al. (2008) studied non-fringe subtrees for various random trees, in-
cluding simply generated trees. They proved that if for all n we have Tn “ T where
T is fixed, then Nnf

Tn
pT gw
n q has a central limit theorem. However, Theorem 1.6

cannot be simply derived from their result as our Tn depends upon n.

Remark 1.7. It is tempting to try to prove that if nπnf pTnq Ñ µ P p0,8q, then

Nnf
Tn
pT gw
n q

d
Ñ Popµq. This is true for fringe subtrees. Unfortunately, it is not true

in general for non-fringe subtrees. See Lemma 5.5 in Section 5.2.
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In Section 5, we prove Theorem 1.6 and apply it to study the maximal complete
r-ary non-fringe subtree in T gw

n . The paper ends with some open questions in
Section 6.

2. Notations and Preliminaries

2.1. Conditional Galton-Watson trees. The preorder of nodes in a tree T is the
order in which they are visited through the following Depth-First-Search procedure:

(1) Let S be an empty stack.
(2) Put the root of T at the top of S.
(3) Remove the node (v) at the top of S.
(4) Put the children of v at the top of S in order of appearance.
(5) If S is empty, terminate. Otherwise go to step 3.

Let v1, . . . , vk be the nodes of T in preorder. Let di be the degree (the number
of children) of vi. We call pd1, d2, . . . , dkq the preorder degree sequence of T . Let
N :“ t1, 2, . . .u and let N0 :“ t0uYN. It is well-known that (see Janson (2012, lem.
15.2)):

Lemma 2.1. A sequence pd1, d2, . . . , dkq P Nk0 is the preorder degree sequence of
some tree if and only if it satisfies

#

řj
i“1 di ě j, p1 ď j ď k ´ 1q

řk
i“1 di “ k ´ 1.

(2.1)

Figure 2.1 gives a demonstration of Lemma 2.1.

The degree sequence

pd1, . . . , d7q “ p2, 1, 0, 3, 0, 0, 0q

řj
i“1 di ´ j for j “ 1, . . . , 7

1 2 3 4 5 6 7

-1

0

1

2

3

Figure 2.1. Example of preorder tree degree sequence.

Let Dk Ď Nk0 be the set of all preorder degree sequences of length k. Observe:

Corollary 2.2. If pd1, d2, . . . , dkq P Dk, then it is impossible that there exists 1 ď
k1 ă k such that pd1, d2, . . . , dk1q P Dk1 .

Let ξn :“ pξn1 , . . . , ξ
n
nq be the preorder degree sequence of T gw

n . Let rξn :“

prξn1 , . . . ,
rξnnq be a uniform random cyclic rotation of ξn. Let ξ1, ξ2, . . . be i.i.d. copies

of ξ. Let Sn :“
řn
i“1 ξi. The next lemma is a well-known connection between rξn

and ξ1, . . . , ξn (see, e.g., Otter, 1948, Kolchin, 1986, Dwass, 1969 and Pitman, 1998).
For a complete proof, see Janson (2012, cor. 15.4).
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Lemma 2.3. Assume that P t|T gw| “ nu ą 0. We have

prξn1 , . . . ,
rξnnq

L
“ pξ1, . . . , ξn | Sn “ n´ 1q ,

where
L
“ denotes “identically distributed” and the right-hand-side denotes

pξ1, . . . , ξnq restricted to the event that Sn “ n´ 1.

Let pi :“ P tξ “ iu. Let h be the span of ξ, i.e., h :“ gcdti ě 1 : pi ą 0u. We
recall the following result (see Janson, 2016, 4.3 or Kolchin, 1986):

Lemma 2.4. Assume Condition A. We have

P t|T gw| “ nu „
h

?
2πσ2

n´3{2,

as nÑ8 with n´ 1 ” 0 pmod hq.

The following lemma is a special case of Janson (2016, lem. 5.1). We nonetheless
give a short proof for later reference in the paper.

Lemma 2.5. Assume P t|T gw| “ nu ą 0. Let T P Tk with 1 ď k ď n.

(i) Let NT pT gw
n q :“

ř

vPT gw
n

JT gw
n,v “ T K. Then

E rNT pT gw
n qs

n
“ πpT q

P tSn´k “ n´ ku

P tSn “ n´ 1u
.

(ii) Let NTkpT gw
n q “

ř

vPT gw
n

J|T gw
n,v | “ kK. Then

E rNTkpT gw
n qs

n
“ πpTkq

P tSn´k “ n´ ku

P tSn “ n´ 1u
.

Proof : Let pd1, . . . , dkq be the preorder degree sequence of T . Recall that
pξn1 , . . . , ξ

n
nq is the preorder degree sequence of T gw

n . Let

Ii “ Jξni “ d1, ξ
n
i`1 “ d2, . . . , ξ

n
i`k´1 “ dkK,

where the indices are taken modulo n.
Note that if n ´ k ` 1 ă i ď n, then it is impossible that Ii “ 1, because the

length of the preorder degree sequence of the fringe subtree T gw
n,vi must be strictly

less than k. Therefore, if Ii ą 1 and n´ k ` 1 ă i ď n, then there exists a k1 ă k
such that pd1, d2, . . . , d

1
kq is also a preorder degree sequence, which is impossible by

Corollary 2.2.
Therefore for all 1 ď i ď n, Ii “ JTvi “ T K and NT pT gw

n q “
řn
i“1 Ii. Recalling

that prξn1 , . . . ,
rξnnq is a uniform random rotation of pξn1 , . . . , ξ

n
nq and using Lemma 2.3,

we have

E rNT pT gw
n qs “ E

«

n
ÿ

i“1

Ii

ff

“

n
ÿ

i“1

P
 

ξni “ d1, ξ
n
i`1 “ d2, . . . , ξ

n
i`k´1 “ dk

(

“

n
ÿ

i“1

P tξi “ d1, ξi`1 “ d2, . . . , ξi`k´1 “ dk | Sn “ n´ 1u

“ nP tξ1 “ d1, ξ2 “ d2, . . . , ξk “ dk | Sn “ n´ 1u

“ n
P trξ1 “ d1, ξ2 “ d2, . . . , ξk “ dks X rSn “ n´ 1su

P tSn “ n´ 1u
.
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Since pd1, . . . dkq is a preorder degree sequence,
řk
i“1 di “ k ´ 1 by Lemma 2.1.

Therefore, using the fact that ξ1, . . . , ξn are independent, the last expression equals

n
P trξ1 “ d1, . . . , ξk “ dks X rSn´k “ n´ ksu

P tSn “ n´ 1u
“ nP tT gw “ T u

P tSn´k “ n´ ku

P tSn “ n´ 1u
.

Thus part (i) is proved. Part (ii) follows by summing the equality in (i) over all
T P Tk. �

The following approximations are useful for estimating the expectation and the
variance of the number of fringe subtrees.

Lemma 2.6 (Lemma 5.2 and 6.2 of Janson, 2016). Assume Condition A and let ξ
have span 1. We have:
(i) Uniformly for all k with 1 ď k ď n{2,

P tSn´k “ n´ ku

P tSn “ n´ 1u
“ 1`O

ˆ

k

n

˙

` o
´

n´1{2
¯

.

(ii) Uniformly for all k with 1 ď k ď n{4,

P tSn´2k “ n´ 2k ` 1u

P tSn “ n´ 1u
´

ˆ

P tSn´k “ n´ ku

P tSn “ n´ 1u

˙2

“ ´
1

σ2n
` o

ˆ

1

n

˙

`O

ˆ

k

n3{2
`
k2

n2

˙

. (2.2)

Remark 2.7. As shown in the proof of Lemma 2.5, NT pT gw
n q is equivalent to the

number of patterns d1, . . . , d|T | in the cycle rξn1 , . . . ,
rξnn . Thus if h (the span of ξ) is

greater than one, we can divide d1, . . . , d|T | and rξn1 , . . . ,
rξnn by h without changing

the value of NT pT gw
n q. Therefore, when studying subtree counts, we can always

assume that h “ 1.

2.2. Poisson Approximation. Let Bipn, pq denote binomial pn, pq distribution. It is

well known that if Xn
L
“ Bipn, λ{nq, then Xn converges in distribution to Popλq.

This follows from the following stronger result (see Barbour et al., 1992, pp. 8 for
a proof):

Lemma 2.8. If X
L
“ Bipn, pq, then

dTV pX,PopEXqq ď p.

The following Lemma is a special case of Roos (2003, thm. 1), which applies
to mixed Poisson distributions. Barbour et al. (1992, thm. 1.C) proved a similar
result using Stein’s method. We include our proof for its simplicity.

Lemma 2.9. If X
L
“ Popµq and Y

L
“ Popνq, then

dTV pX,Y q ď
ˇ

ˇ

?
µ´

?
ν
ˇ

ˇ “
|µ´ ν|
?
µ`

?
ν
.
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Proof : Let xi “ P tX “ iu and yi “ P tY “ iu. We have

dTV pX,Y q “
1

2

8
ÿ

i“1

|xi ´ yi| “
1

2

8
ÿ

i“1

|
?
xi ´

?
yi|p
?
xi `

?
yiq

ď
1

2

˜

8
ÿ

i“1

|
?
xi ´

?
yi|

2
8
ÿ

j“1

p
?
xj `

?
yjq

2

¸1{2

“
1

2

˜˜

2´
8
ÿ

i“1

2
?
xiyi

¸˜

2`
8
ÿ

j“1

2
?
xjyj

¸¸1{2

“

¨

˝1´

˜

8
ÿ

i“1

?
xiyi

¸2
˛

‚

1{2

,

where the second step uses the Cauchy-Schwartz inequality. An easy calculation
shows that

8
ÿ

i“1

?
xiyi “

8
ÿ

i“1

e´
µ`ν
2
pµνqi{2

i!
“ exp

ˆ

?
µν ´

µ` ν

2

˙

“ exp

ˆ

´
p
?
µ´

?
νq2

2

˙

.

Thus we have

dTV pX,Y q ď
b

1´ exp
`

´p
?
µ´

?
νq2

˘

ď

b

p
?
µ´

?
νq2 pby 1´ e´x ď xq

“
ˇ

ˇ

?
µ´

?
ν
ˇ

ˇ . �

Combining the two, we have:

Lemma 2.10. Let X and M be non-negative integer-valued random variables. If
conditioned on the event M “ m, X is binomial pm, pq, then

dTV pX,PopEXqq ď p`

c

p
Var pMq

EM
.

Proof : Let Z
L
“ PopEXq. We have

dTV pX,Zq “
1

2

ÿ

iě0

|P tX “ iu ´ P tZ “ iu|

ď
1

2

ÿ

iě0

ÿ

mě0

P tM “ mu |P tX “ i | M “ mu ´ P tZ “ iu|

“
ÿ

mě0

P tM “ mu dTV pBipm, pq, Zq

ď
ÿ

mě0

P tM “ mu dTV pBipm, pq,Popmpqq

`
ÿ

mě0

P tM “ mu dTV pPopmpq,PopEXqq .
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By Lemma 2.8, the first sum is at most p. Using Lemma 2.9 and the fact that
EX “ pEM , the second sum is at most

ÿ

mě0

P tM “ mu
|EX ´mp|
?

EX
“
?
p
ÿ

mě0

P tM “ mu
|EM ´m|
?

EM

“
?
p

E r|EM ´M |s
?

EM

ď
?
p

c

Var pMq

EM
. �

3. Sequences of fringe subtrees

In this section we prove Theorem 1.3 and sketch the proof of Theorem 1.4.
Recall that πpT q :“ P tT gw “ T u, and NT pnq :“ J

ř

vPT gw
n

T gw
n,v “ T K. Let k “ kn.

Theorem 1.3 states that

sup
TPTk

dTV pNT pT gw
n q,PopnπpT qqq “ op1q,

whenever k “ opnq and k Ñ 8. If πpT q “ 0, then dTV pNT pT gw
n q,PopnπpT qqq “ 0

deterministically. Thus we can assume that P tT gw P Tku “ P t|T gw| “ ku ą 0 for
all n, and that the above supremum is taken over all T P Tk with πpT q ą 0.

Recall that NTkpT gw
n q :“ J

ř

vPT gw
n

Tv P TkK, i.e., NTkpT gw
n q is the number of

fringe subtrees of size k in T gw
n . Also recall that πpSq :“ P tT gw P Su. We first

compute the expectation and variance of NTkpT gw
n q. Then Lemma 2.10 can be

applied to NTkpT gw
n q and NSpT gw

n q for S Ď Tk to show the following lemma, from
which Theorem 1.3 follows easily:

Lemma 3.1. Assume that k “ kn “ opnq and k Ñ8. We have as nÑ8,

sup
SĎTk

dTV pNSpT gw
n q,PopnπpSqqq

πpSq{πpTkq `
a

πpSq{πpTkq
ď 1` opk´3{2q `O

ˆ

k1{4
?
n

˙

.

Lemma 3.2. Let k “ kn “ opnq. We have

sup
TPTk

ˇ

ˇ

ˇ

ˇ

ENT pT gw
n q

nπpT q
´ 1

ˇ

ˇ

ˇ

ˇ

“ O

ˆ

k

n

˙

` o
´

n´1{2
¯

,

and

sup
SĎTk

ˇ

ˇ

ˇ

ˇ

ENSpT gw
n q

nπpSq
´ 1

ˇ

ˇ

ˇ

ˇ

“ O

ˆ

k

n

˙

` o
´

n´1{2
¯

.

Proof : Since k “ opnq, we have k ă n{2 for n large. Thus by Lemma 2.5 and 2.6,
uniformly for all T P Tk,

ˇ

ˇ

ˇ

ˇ

ENT pT gw
n q

n
´ πpT q

ˇ

ˇ

ˇ

ˇ

“ πpT q

ˇ

ˇ

ˇ

ˇ

P tSn´k “ n´ ku

P tSn “ n´ 1u
´ 1

ˇ

ˇ

ˇ

ˇ

“ πpT q

ˆ

O

ˆ

k

n

˙

` opn´1{2q

˙

.

Summing over all trees T with T P S gives the second part of the lemma. �
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Lemma 3.3. Assume that k “ kn “ opnq and k Ñ8. We have

Var pNTkpT gw
n qq

ENTkpT
gw
n q

ď 1` opk´3{2q `O

˜

c

k

n

¸

.

Proof : Recall that rξn :“ prξn1 , . . . ,
rξnnq is a uniform random rotation of ξn, the

preorder degree sequence of T gw
n . Let

rJi :“ Jprξni , rξ
n
i`1, . . .

rξni`k´1q P DkK.

Then with an argument simliar to Lemma 2.5, we have NTkpT gw
n q “

řn
i“1

rJi.

Using the fact that rJ1, . . . , rJn are identically distributed, Lemma 2.5 and 2.6, we
have

E rJ1 “
1

n
ENTkpT gw

n q “ P t|T gw| “ ku
P tSn´k “ n´ ku

P tSn “ n´ 1u
.

Similar to the proof of Lemma 2.5, we have

E rJ1 rJk`1 “ P
!

prξn1 , . . . ,
rξnk q P Dk, prξnk`1, . . . ,

rξn2kq P Dk
)

“ P tpξ1, . . . , ξkq P Dk, pξk`1, . . . , ξ2kq P Dk | Sn “ n´ 1u

“ πpTkq
2 P tSn´2k “ n´ 2k ` 1u

P tSn “ n´ 1u
,

where ξ1, ξ2, . . . are i.i.d. copies of ξ and Sm :“
řm
i“1 ξi.

Consider two indices i ‰ j. If |i´ j| ă k or |i`n´ j| ă k, then E rJi rJj “ 0. This
is because two fringe subtrees of size k cannot overlap. So for such i and j we have

Cov
´

rJi, rJj

¯

“ E
”

rJi rJj

ı

´ E
”

rJi

ı

E
”

rJj

ı

ď 0.

On the other hand, if |i ´ j| ą k and |i ` n ´ j| ą k, i.e., prξni , . . . ,
rξni`k´1q

and prξnj , . . . ,
rξnj`k´1q do not overlap, then Cov

´

rJi rJj

¯

“ Cov
´

rJ1 rJk`1

¯

since rξn is

permutation invariant. By Lemma 2.4, we have πpTkq “ Θpk´3{2q. Therefore

Cov
´

rJ1, rJk`1

¯

“ E
”

rJ1 rJk`1

ı

´ E
”

rJ1

ı

E
”

rJk`1

ı

“
P tSn´2k “ n´ 2k ` 1u

P tSn “ n´ 1u
´

ˆ

P tSn´k “ n´ ku

P tSn “ n´ 1u

˙2

“ πpTkq
2

„

´
1

σ2n
` o

ˆ

1

n

˙

`O

ˆ

k

n3{2
`
k2

n2

˙

pLemma 2.6q

ď
πpTkq

n

„

opk´3{2q `O

ˆ

k´3{2k
?
n

`
k´3{2k2

n

˙

“
E rJ1
n

˜

o
´

k´3{2
¯

`O

˜

c

k

n

¸¸

.
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Therefore,

Var pNTkpT gw
n qq “

ÿ

1ďi‰jďn

Cov
´

rJi, rJj

¯

`

n
ÿ

i“1

Var
´

rJi

¯

ď n2Cov
´

rJ1, rJk`1

¯

` nE
”

rJ1

ı ´

1´ E
”

rJ1

ı¯

ď n2
E rJ1
n

´

o
´

k´3{2
¯

`O
´

a

k{n
¯¯

` nE
”

rJ1

ı

“

´

1` o
´

k´3{2
¯

`O
´

a

k{n
¯¯

E rNTkpT gw
n qs . �

The following observation allows us to apply Lemma 2.10 to finish the proof.

Lemma 3.4. Let event Em “ rNTkpT gw
n q “ ms. Conditional on Em, the m fringe

subtrees of size k in T gw
n has the distribution of m i.i.d. copies of T gw

k . Thus for
S Ď Tk, conditional on Em, NSpT gw

n q is binomial pm,πpSq{πpTkqq.

Proof : Conditional on E1, the probability that T gw
n has T P Tk as the only fringe

subtree of size k must be proportional to πpT q. And since this fringe subtree can
only have size k, this probability in fact must be πpT q{πpTkq. In other words,
this fringe subtree has the distribution of T gw

k . It is not difficult to extend this
argument to Em with m ą 1. �

Proof of Lemma 3.1: Let S Ď Tk. Let X “ NSpT gw
n q, M “ NTkpT gw

n q and p “
πpSq{πpTkq. By Lemmas 2.10, 3.3, and 3.4, we have

dTV pX,PopEXqq ď p`
?
p

c

Var pMq

EM
ď pp`

?
pq

˜

1` opk´3{2q `O

˜

c

k

n

¸¸

.

By Lemma 2.9, we have

dTV pPopEXq,PopnπpSqqq ď |nπpSq ´ EX|
a

nπpSq

“
a

nπpSq
ˆ

O

ˆ

k

n

˙

` o
´

n´1{2
¯

˙

(By Lemma 3.2)

ď
a

nπpTkq

ˆ

O

ˆ

k

n

˙

` o
´

n´1{2
¯

˙

“ O

ˆ

k1{4
?
n

˙

` opk´3{4q (By Lemma 2.4).

The lemma follows from triangle inequality. �

Proof of Theorem 1.3: Let k “ kn. For T P Tk, we have πpT q ď pkmax. Therefore,
by Lemma 2.4, πpT q{πpTkq ď pkmax{Θpk

´3{2q “ op1q. It follows from Lemma 3.1
that

dTV pNT pT gw
n q,PopnπpT qqq ď p1` op1qq

˜

πpT q

πpTkq
`

d

πpT q

πpTkq

¸

“ op1q.

Statements (i)–(iii) follows immediately. �
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3.1. The sketch of the proof of Theorem 1.4. Part (iv) of Theorem 2.4 follows di-
rectly from Lemma 2.9. However, to show (i)-(iii) of Theorem 1.4, we instead need
the following lemma (whose proof is quite similar to that of Lemma 3.3):

Lemma 3.5. Let r “ rn “ op
?
nq and k “ kn “ opn{r2nq with k Ñ8. We have

sup
SĎTk

sup
sďr

ˇ

ˇ

ˇ

ˇ

EpNSpT gw
n qqs

pnπpSqqs
´ 1

ˇ

ˇ

ˇ

ˇ

“ op1q,

where pxqs :“ xpx´ 1q ¨ ¨ ¨ px´ s` 1q.

Thus if nπpAnq Ñ µ P r0,8q, then EpNAnpT gw
n qqs Ñ µs, for all fixed s. It is

well-known that this implieslpNAnpT gw
n q

d
Ñ Popµq (see van der Hofstad, 2017, thm.

2.4). Part (i) and (ii) of Theorem 1.4 follows immediately. And part (iii) comes
from the following result:

Lemma 3.6 (Gao and Wormald, 2004, thm. 1). Let pXnqně1 be a sequence of
integer-valued random variables. If there exists a sequence µn Ñ8 such that

sup
sď
?
µn

ˇ

ˇ

ˇ

ˇ

EpXnqs

µsn
´ 1

ˇ

ˇ

ˇ

ˇ

Ñ 0,

then we have
Xn ´ µn
?
µn

d
ÑNp0, 1q.

4. Families of fringe subtrees

In this section, we apply Theorem 1.3 and 1.4 to study the conditions for T gw
n

to contain every tree that belongs to a family of trees.

4.1. Coupon collector problem. As shown later, our problem is essentially a vari-
ation of the famous coupon collector problem—if in every draw we get a coupon
with a uniform random type among n types, how many draws do we need to collect
all n types of coupons? The next lemma is about a generalization of this problem
needed later. For the original problem, see Erdős and Rényi (1961) and Flajolet
et al. (1992). For more about the generalized version defined below, see Neal (2008).

Lemma 4.1 (Generalized coupon collector). Let Xn be a random variable that
takes values in t1, . . . , nu. Let pn,i :“ P tXn “ iu. Assume that pn,i ą 0 for all
1 ď i ď n. Let Xn,1, Xn,2, . . . be i.i.d. copies of Xn. Let

Nn :“ infti ě 1 : |tXn,1, Xn,2, . . . , Xn,iu| “ nu.

Let mn be a sequence of real numbers. We have

1´
n
ÿ

i“1

p1´ pn,iq
mn ď P tNn ď mnu ď

1
řn
i“1p1´ pn,iq

mn
.

Proof : Let m “ mn. Let Zn,i “ Ji R tXn,1, . . . , Xn,muK. Then Nn ď m if and only
if Zn :“

řn
i“1 Zn,i “ 0, i.e., P tNn ď mu “ P tZn “ 0u “ 1´ P tZn ě 1u.

The first inequality of this lemma follows from the following:

P tZn ě 1u ď EZn “
n
ÿ

i“1

EZn,i “
n
ÿ

i“1

P
 

Xmj“1Xn,j ‰ i
(

“

n
ÿ

i“1

p1´ pn,iq
m
.
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For 1 ď i ‰ j ď n, we have

E rZn,iZn,js ´ E rZn,isE rZn,js “ p1´ pn,i ´ pn,jq
m ´ p1´ pn,iq

mp1´ pn,jq
m

“ p1´ pn,iq
m

„ˆ

1´
pn,j

1´ pn,i

˙m

´ p1´ pn,jq
m



ă 0.

Therefore

Var pZnq “
ÿ

1ďi,jďn

E rZn,iZn,js ´ E rZn,isE rZn,js

“
ÿ

1ďi‰jďn

pE rZn,iZn,js ´ E rZn,isE rZn,jsq

`
ÿ

1ďiďn

´

E rZn,is ´ E rZn,is
2
¯

ď EZn.

Thus by Chebyshev’s inequality, as in the second moment method (see e.g., Alon
and Spencer, 2008, chap. 4), we have

P tZn “ 0u ď P t|Zn ´ EZn| ě EZnu ď
Var pZnq

pEZnq2
ď

1

EZn
“

1
řn
i“1p1´ pn,iq

mn
. �

4.2. Complete r-ary fringe subtrees. A tree T is called possible if πpT q ą 0. Let
r ą 0 be a fixed integer and hn be a sequence of positive integers. A simple
application of Theorem 1.3 is to find sufficient conditions such that whp every (or
not every) possible complete r-ary tree appears in T gw

n as fringe subtrees.
Let hn Ñ8 be a sequence of positive integers. Let Ahn,r be the set of all possible

complete r-ary trees of height at most hn. Let

Hn,r “ max th : T gw
n contains all trees in Ahn,r as fringe subtreesu .

Lemma 4.2. Assume Condition A and pr ą 0 for some r ě 2. Let

αr “ logr

ˆ

log
1

p0
`

1

r ´ 1
log

1

pr

˙

.

Let ωn Ñ8 be an arbitrary sequence.

(i) If hn ď logrplog n´ ωnq ´ αr, then whp T gw
n contains all trees in Ahn,r as

fringe subtrees.
(ii) If hn ě logrplog n ` ωnq ´ αr, then whp T gw

n does not contain all trees in
Ahn,r as fringe subtrees.

Also,

Hn,r ´ logr log n
p
Ñ ´ αr.

Proof : Let T r-ary
hn

denote the complete r-ary tree of height hn. Note that if T r-ary
hn

appears in T gw
n as a fringe subtree, then every tree in Ahn,r also appears in T gw

n as
a fringe subtree. The tree T r-ary

n has `n :“ rhn leaves and vn :“ prhn ´ 1q{pr´ 1q “
p`n ´ 1q{pr ´ 1q internal vertices, which all have degree r. Thus we have

πpT r-ary
hn

q :“ P
 

T gw “ T r-ary
hn

(

“ pvnr p
`n
0 .



592 X. S. Cai and L. Devroye

If hn ď logrplog n´ ωnq ´ αr, then

`n “ rhn ď
log n´ ωn

rαr
.

Therefore

log
1

πpT r-ary
hn

q
“ vn log

1

pr
` `n log

1

p0

“
`n ´ 1

r ´ 1
log

1

pr
` `n log

1

p0

“ `n

ˆ

1

r ´ 1
log

1

pr
` log

1

p0

˙

`Op1q

ď
log n´ ωn

rαr
rαr `Op1q

“ log n´ ωn `Op1q.

Thus logpnπpT r-ary
hn

qq ě ωn ` Op1q Ñ 8, which implies that nπpT r-ary
hn

q Ñ 8. It

follows from Theorem 1.3 that NT r-ary
hn

pT gw
n q

p
Ñ8. Thus (i) is proved.

Similar computations show that the assumptions of (ii) implies that nπpT r-ary
hn

q

Ñ 0. Thus NT r-ary
hn

pT gw
n q

p
Ñ 0 by Theorem 1.3. The last statement of the lemma

follows directly from (i) and (ii). �

We have a similar result for the set of 1-ary trees (chains) of height at most h.
The proof is virtually identical to the previous lemma and we leave it to the reader.

Lemma 4.3. Assume Condition A and p1 ą 0. Let ωn Ñ 8 be an arbitrary
sequence. We have:

(i) If hn ď plog n ´ ωnq{ log 1
p1

, then whp T gw
n contains all trees in Ahn,1 as

fringe subtrees.
(ii) If hn ě plog n ` ωnq{ log 1

p1
, then whp T gw

n does not contain all trees in

Ahn,1 as fringe subtrees.

Therefore

Hn,1

log1{p1pnq

p
Ñ 1.

4.2.1. Binary trees. Consider T gw
n with a binomial p2, 1{2q offspring distribution,

i.e., p0 “ p2 “ 1{4 and p1 “ 1{2. Let T bin
n be T gw

n with each degree-one node
labeled of having a left or a right child uniformly and independently at random.
Then T bin

n is a tree in which nodes have a left position and a right position where
child nodes can attach, and each position can be occupied by at most one child.
We call such a tree a binary tree.

Let Tbin
n be a binary tree of size n that has n0, n1, n2 nodes of degree 0, 1, 2

respectively, where n0`n1`n2 “ n. Let Tn be Tbin
n with the difference between left

and right children being forgotten. We have P
 

T bin
n “ Tbin

n |T gw
n “ Tn

(

“ 1{2n1 ,
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since there are in total 2n1 ways to label the n1 degree-one nodes of Tn. Therefore

P
 

T bin
n “ Tbin

n

(

“ P
 

T bin
n “ Tbin

n |T gw
n “ Tn

(

P tT gw
n “ Tnu

“ P
 

T bin
n “ Tbin

n |T gw
n “ Tn

( P tT gw “ Tnu

P t|T gw| “ nu

“
1

2n1

1

4n0n22n1

1

P t|T gw| “ nu
“

1

4nP t|T gw| “ nu
.

In other words, as is well-known from the connection between simply generated
trees and Galton-Watson trees of size n, see, e.g., Janson (2012, pp. 132), T bin

n is
uniformly distributed among all binary trees of size n.

Thus our analysis of maximum r-ary fringe subtree in T gw
n can be easily adapted

to uniform random binary trees. For example, an argument similar to Lemma 4.3
shows that the maximum one-ary fringe subtree (chain) in T bin

n that consists of
only left children has length about log4 n.

4.3. All possible fringe subtrees. Recall that T`
ďk denotes the set of all possible trees

of size at most k, i.e.,

T`
ďk :“ tT P T : |T | ď k,P tT gw “ T u ą 0u.

Also recall that

Kn :“ maxtk : T`
ďk Ď YvPT gw

n
tT gw
n,v uu.

We would like to study the growth of Kn with n.
Let Geppq denote Geometric p distribution, i.e., P tGeppq “ iu “ pp1 ´ pqi for

i P N0. Let Beppq denote Bernoulli p distribution and let Bipd, pq denote Binomial
pd, pq distribution. Recall that Popλq is a Poissonpλq random variable. Table 4.1
shows five types of well-known conditional Galton-Watson trees. See Janson (2012,
sec. 10) for more examples.

Name Definition

Plane trees ξ
L
“ Gep1{2q pi “ 1{2i`1 pi ě 0q

Full binary trees ξ
L
“ 2 Bep1{2q p0 “ p2 “ 1{2

Motzkin trees ξ uniform in t0, 1, 2u p0 “ p1 “ p2 “ 1{3

d-ary trees ξ
L
“ Bipd, 1{dq pi “

`

d
i

˘ `

1´ 1
d

˘i ` 1
d

˘d´i
p0 ď i ď dq

Labeled trees ξ
L
“ Pop1q pi “ e´1{i!

Table 4.1. Some well-known conditional Galton-Watson trees.

We can assume that P t|T gw| “ knu ą 0 for all n P N. Otherwise, let k1n :“
maxti ď kn : P t|T gw| “ iu ą 0u. It is not difficult to show that kn´k

1
n ď h “ Op1q

for kn large. (See Janson, 2012, lem. 12.3 for details.) Thus this assumption does
not change results in this subsection.

Janson (2012, thm. 7.12) showed that T gw
n,˚

d
Ñ T gw. In other words, fringe sub-

trees on average behave like unconditional Galton-Watson trees. Let Tmin
k be a

tree T P T`
ďk that minimizes P tT gw “ T u. Then Tmin

k also is the least likely tree

to appear in T gw
n as fringe subtree among all trees in T`

ďk when n is large. So

intuitively if whp Tmin
k appears in T gw

n , then every tree in T`
ďk should also appears
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whp. And if whp Tmin
k does not appear, then whp there is at least one tree in T`

ďk

that is missing. Therefore, the problem can be reduced to finding

pmin
k :“ P

 

T gw “ Tmin
k

(

“ min
TPT`

ďk

P tT gw “ T u .

Lemma 4.4. Assume Condition A. If kn Ñ 8 and npmin
kn

{kn Ñ 8, then whp

every tree in T`
ďkn

appears in T gw
n .

Proof : Let k “ kn. Recall that pmax :“ maxiě0 pi and pmax ă 1. Therefore
pmin
k ď pkmax. Thus we can assume that k ď 2 logpnq{ logpp´1

maxq when k is large.
Otherwise we have npmin

k ď n´1 Ñ 0, which contradicts the assumption.
Thus by Theorem 1.4, NTkpT gw

n q ě yn :“ r 12nP tT gw “ |k|us whp. Let An be
the event that T gw

n contains all possible trees of size k as fringe subtrees. Let Bnpiq
be the event that NTkpT gw

n q “ i for given i ě yn. Thus

P tAnu “ P tAn X rNTkpT gw
n q ă ynsu `

ÿ

iěyn

P tAn|BnpiquP tBnpiqu

ě P tAn|Bnpynqu
ÿ

iěyn

P tBnpiqu ,

“ P tAn|Bnpynqu p1´ op1qq,

where the inequality comes from the obvious fact that P tAn|Bnpaqu ě P tAn|Bnpbqu
given that a ě b. So it suffices to prove that P tAcn|Bnpynqu Ñ 0.

This is in fact equivalent to a coupon collector problem. Let T gw
n |Bnpynq be T gw

n

restricted to the event Bnpynq. Let T ˚ be a random tree distributed as T gw
n |Bnpynq.

Replace each of its yn subtrees with an independent copy of T gw
k . By Lemma 3.4,

the result is still a random tree distributed as T gw
n |Bnpynq.

So P tAn|Bnpynqu equals the probability of that yn independent copies of T gw
k

contain every tree in T`
ďk. It follows from Lemma 4.1 (the coupon collector) that

P tAcn|Bnpynqu ď
ÿ

TPT`
ďk

p1´ P tT gw
k “ T uq

yn
ď

ÿ

TPT`
ďk

exp t´ynP tT gw
k “ T uu

ď
ÿ

TPT`
ďk

exp

"

´
1

2
nP t|T gw| “ ku

P tT gw “ T u

P t|T gw| “ ku

*

ď Op|T`
ďk|q exp

 

´npmin
k

(

.

It is well-known that the number of plane trees of size exactly k is 4k´1{
?
πk3p1`

op1qq. See, e.g., Flajolet and Sedgewick (2009, pp. 406). It follows that there exists

a constant C such that |T`
ďk| ď

řk
j“1 C4j´1 ď C4k for all k P N. Thus for large

enough k, the last expression above is at most

C4k exp
 

´npmin
k

(

“ C exp
 

k logp4q ´ npmin
k

(

Ñ 0.

Therefore we have P tAcn|Bnpynqu Ñ 0. �

Theorem 4.5. Assume Condition A. Assume that as k Ñ8,

logp1{pmin
k q „ γkαplog kqβ ,

where α ě 1, β ě 0, γ ą 0 are constants. Let kn Ñ 8 be a sequence of positive
integers. Let m “ log n. Then for all constants δ ą 0, we have:
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(i) If kn ď p1 ´ δqrm{γplogm1{αqβs1{α, then whp T gw
n contains all trees in

T`
ďkn

as fringe subtrees.

(ii) If kn ě p1`δqrm{γplogm1{αqβs1{α, then whp T gw
n does not contain all trees

in T`
ďkn

as fringe subtrees.

As a result,

Kn

plog n{plog log nqβq
1{α

p
Ñ

ˆ

αβ

γ

˙1{α

.

The behavior of pmin
k varies for different offspring distributions. But as men-

tioned in the introduction, the types of trees that we are interested in all have pmin
k

that are covered by Theorem 4.5.

Proof : Let k “ kn. Part (i) assumes that

k ď p1´ δq

„

m

γplogm1{αqβ

1{α

.

Taking a logarithm, we have

log k ď logp1´ δq `
1

α
log

m

γplogm1{αqβ
“ p1` op1qq logm1{α.

Thus

log
1

pmin
k

„ γkαplog kqβ ď pγ ` op1qq
p1´ δqαm

γplogm1{αqβ
plogm1{αqβ „ p1´ δqαm.

Therefore, recalling m “ log n,

log npmin
k “ m´ log

1

pmin
k

ě m´ p1` op1qqp1´ δqαm “ Ωpmq.

It follows that

log k ´ log npmin
k “ O plogmq ´ Ωpmq Ñ ´8.

Thus npmin
k {k Ñ 8 and it follows from Lemma 4.4 that whp T gw

n contains every
tree in T`

ďk as a fringe subtree.

Similar computations show that if k ě p1`δqrm{γplogm1{αqβs1{α then npmin
k Ñ

0. It follows from Theorem 1.3 that NTmin
k
pT gw
n q

p
Ñ 0. Thus whp T gw

n does not

contain every tree in T`
ďk as a fringe subtree. �

Remark 4.6. The above coupon collector approach can be also used for studying
the sufficient conditions for T gw

n to contain all r-ary trees of size k (not necessarily
complete). We can think of these r-ary trees as types of coupon that we need to
collect and NTkn

pT gw
n q as the number of draws of coupons that we are allow to

carry out.

The rest of this section is organized as follows. In the next subsection, we give
a general method of finding pmin

k . Then we divide offspring distributions in two
categories and show that Theorem 4.5 is applicable to all the Galton-Watson trees
listed in Table 4.1.
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4.3.1. Computing pmin
k . Let Ik :“ tj : 1 ď j ď k, pj ą 0u. Let L1 :“ p0 and for

k ě 2 let

Lk :“ min

#

p0

ˆ

pi
p0

˙1{i

: i P Ik´1

+

.

Since Lk is non-increasing, L :“ limkÑ8 Lk exists. Equivalently, we have

L :“ inf

#

p0

ˆ

pi
p0

˙1{i

: i P N, pi ą 0

+

.

Theorem 4.7. Assume Condition A. We have ppmin
k q1{k Ñ L as k Ñ 8, where

the limit is taken along the subsequence k with P t|T gw| “ ku ą 0. As a result, we
have L ă 1.

In fact, we have a stronger result for the upper bound of ppmin
k q1{k.

Lemma 4.8. Assume Condition A. For all fixed i with pi ą 0, there exist constants
Ci ą 1 and C 1i, C

2
i , kpiq ą 0 such that for all k ě kpiq with P t|T gw| “ ku ą 0, there

are at least k´C
1
iCki trees T of size k with

0 ă P tT gw “ T u ď C2i

«

p0

ˆ

pi
p0

˙1{i
ffk

.

Proof : We give a proof assuming that there exists a j such that pj ą 0 and that i
and j are coprime. The proof of the general case is similar. Let x “ pk´ 1q mod i.
By the Chinese reminder theorem, there exists a smallest non-negative integer y
such that

#

y ” x pmod iq,

y ” 0 pmod jq.

Note that y depends only on i. Therefore, if k ě kpiq :“ y ` 1, we can choose

n0 “ k ´ ni ´ nj , nj “
y

j
, ni “

k ´ 1´ y

i
,

such that n0, ni, nj are all non-negative integers with

n0 ` ni ` nj “ k, and ini ` jnj “ k ´ 1.

Let Tkpn0, ni, njq be the set of plane trees of size k that has n0, ni and nj nodes
with degree 0, i and j respectively. It is well-known that when the above two
conditions hold, we have

|Tkpn0, ni, njq| :“
1

k

ˆ

k

n0, ni, nj

˙

“
1

k

k!

n0!ni!nj !
.

(See Flajolet and Sedgewick, 2009, pp. 194.) Since i is a constant and y only
depends on i, there exists a constant C˚i such that

|n0 ´ kp1´ 1{iq| ď C˚i , |ni ´ k{i| ď C˚i , nj ď C˚i .

Using these inequalities and Stirling’s approximation (Flajolet and Sedgewick, 2009,
pp. 407), it is easy to verify that there exists a constant C 1i ą 0 such that

|Tkpn0, ni, njq| ě k´C
1
i

˜

ˆ

1

i

˙1{iˆ

1´
1

i

˙1´1{i
¸´k

:“ k´C
1
iCki .
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And for every T P Spn0, ni, njq, we have

P tT gw “ T u ď pnii p
n0
0 ď p

´C˚i
i p

´C˚i
0 p

k{i
i p

kp1´1{iq
0 :“ C2i

«

p0

ˆ

pi
p0

˙1{i
ffk

. �

Proof of Theorem 4.7: Let T be a tree with |T | “ k and P tT gw “ T u ą 0, i.e.,
T P T`

ďk. Let ni be the number of nodes of degree i in T . Note that if i ą 0 and
i R Ik´1, then ni “ 0. Since by (2.1) the sum of the degrees in a preorder degree
sequence equals the size of the tree minus one, we have

n0 ` n1 ` . . . nk´1 “ k, and n1 ` 2n2 . . .` pk ´ 1qnk´1 “ k ´ 1.

Using the convention that 00 “ 1, we have for k ě 2

P tT gw “ T u “ pn0
0 pn1

1 ¨ ¨ ¨ p
nk´1

k´1

“ p
n0`n1`...`nk´1

0

ˆ

p1
p0

˙n1
ˆ

p2
p0

˙n2

¨ ¨ ¨ `

ˆ

pk´1

p0

˙nk´1

“ pk0
ź

iPIk´1

«

ˆ

pi
p0

˙
1
i

ffini

ě pk0

«

min
iPIk´1

ˆ

pi
p0

˙
1
i

ff

řk´1
i“1 ini

“ p0L
k´1
k ě p0L

k´1. (4.1)

As a result lim infkÑ8 pp
min
k q1{k ě L.

To show the other way, let ε ą 0 be a constant, and let α “ minti : Li`1 ď L`εu.
Therefore 0 ă p0ppα{p0q

1{α ď L` ε. By Lemma 4.8, there is at least one tree T of
size k such that

pmin
k ď P tT gw “ T u ď Cα

«

p0

ˆ

pα
p0

˙
1
α

ffk

ď CαpL` εq
k,

where Cα ą 0 is constant. Thus lim supkÑ8 pp
min
k q1{k ď L` ε. Since ε is arbitrary,

we have lim supkÑ8 pp
min
k q1{k ď L.

Recall that pmax :“ maxiě0 pi ă 1. For all trees T with size k, we have
P tT gw “ T u ď pkmax, i.e., ppmin

k q1{k ď pmax. Thus L “ limkÑ8 pp
min
k q1{k ď

pmax ă 1. �

4.3.2. When L ą 0. If L ą 0, then by Theorem 4.7, logp1{ppmin
k q1{kq „ logp1{Lqk “

logp1{Lqkplog kq0. Thus we can apply Theorem 4.5 with γ “ logp1{Lq, α “ 1 and
β “ 0 to get

Kn

logpnq

p
Ñ

1

log p1{Lq
.

The following Lemma computes L for some well-known Galton-Watson trees. See
Janson (2012, sec. 10) for more about these trees.

Lemma 4.9. (i) Full binary tree: If ξ
L
“ 2 Bep1{2q, then L “ 1{2. (ii) Motzkin tree:

If p0 “ p1 “ p2 “ 1{3, then L “ 1{3. (iii) d-ary tree: If ξ
L
“ Bipd, 1{dq for d ě 2,

then L “ pd´ 1qd´1{dd. (iv) Plane tree: If ξ
L
“ Gep1{2q, then L “ 1{4.
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Proof : (i): If ξ „ 2 Bep1{2q, then p0 “ 1{2, p2 “ 1{2 and pi “ 0 for i R t0, 2u. Thus
for k ě 3, we have

Lk “ min
i:iăk,pią0

p0

ˆ

pi
p0

˙1{i

“ p0

ˆ

p2
p0

˙1{2

“ 1{2.

Therefore L “ limkÑ8 Lk “ 1{2. (ii) and (iii) follow from similar simple calcula-
tions.

(iv): For all i ě 1, we have

p0

ˆ

pi
p0

˙1{i

“
1

2

ˆ

1

2i

˙1{i

“ 1{4.

Therefore Lk “ 1{4 for all k ě 1, and L “ 1{4. �

Define

κ “

#

minti P N : Li`1 “ Lu if Lj “ L for some j,

8 otherwise.

If κ ă 8, then we call the Galton-Watson tree well-behaved. Examples of such trees
include those for which ξ is bounded, and those for which ξ has a polynomial or sub-

exponential tail. The case ξ
L
“ Gep1{2q is also well-behaved. Thus the four types of

Galton-Watson trees in Lemma 4.9 are well-behaved. The following theorem gives
better thresholds than Theorem 4.5.

Theorem 4.10. Assume Condition A and let the Galton-Watson tree be well-
behaved. Then for all constants δ ą 0, we have:

(i) If kn ď plog n´ p1` δq log log nq{ log 1
L , then whp T gw

n contains all trees in

T`
ďkn

as fringe subtrees.

(ii) If kn ě plog n´ p1´ δq log log nq{ log 1
L , then whp T gw

n does not contain all

trees in T`
ďkn

as fringe subtrees.

Thus as nÑ8, we have

Kn logp1{Lq ´ log n

log log n

p
Ñ ´ 1.

Remark 4.11. As can be seen from the proof of Lemma 4.8, among well-behaved
Galton-Watson trees of size kn, the least possible are those contain maximal number
of degree κ nodes. These are the trees that do not appear in case (ii).

The main idea is that when κ ă 8, there are exponentially many trees of size k
that have small probability to appear as fringe subtrees in T gw

n . Then we can use
Lemma 4.1 (the coupon collector) to find the sufficient condition for one of them
to not to appear whp.

Proof : (i): Write m “ log n and k “ kn. Using (4.1), it is easy to verify that in
this case npmin

k {k Ñ8. Thus (i) follows from Lemma 4.4.
(ii): The proof is similar to the one of Lemma 4.4. As in that proof, we

can assume that k “ Oplog nq. Thus by Theorem 1.4, whp NTkpT gw
n q ď yn :“

t 32nP t|T gw| “ kuu. Let An be the event that T gw
n contains all possible trees of size
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k as fringe subtrees. Let Bnpiq be the event that NTkpT gw
n q “ i for some i ď yn.

Then

P tAnu ď P tNTkpT gw
n q ą ynu `

ÿ

iďyn

P tAn|BnpiquP tBnpiqu

ď op1q ` P tAn|Bnpynqu
ÿ

iďyn

P tBnpiqu ,

ď op1q ` P tAn|Bnpynqu .

Thus it suffices to prove that P tAn|Bnpynqu Ñ 0.
Using the same coupling as in the proof of Lemma 4.4, we have P tAn|Bnpynqu

equals the probability that yn independent copies of T gw
k do not contains all trees

in T`
ďk. It follows from Lemma 4.1 (the coupon collector) that P tAn|Bnpynqu Ñ 0

if
ř

TPT`
ďk
p1´ P tT gw

k “ T uqyn goes to infinity.

By definition of κ, we have L “ p0ppκ{p0q
1{κ. It follows from Lemma 4.8 that

there exists constants Cκ ą 1 and C 1κ, C
2
κ ą 0 such that there are at least k´C

1
κCkκ

trees T in T`
ďk with

P tT gw
k “ T u “

P tT gw “ T u

P t|T gw| “ ku
ď C2κ

pp0ppκ{p0q
1{κqk

P t|T gw| “ ku
“

C2κL
k

P t|T gw| “ ku
.

Therefore

ÿ

TPT`
ďk

p1´ P tT gw
k “ T uqyn ě k´C

1
κCkκ

ˆ

1´
C2κL

k

P t|T gw| “ ku

˙yn

.

Since L ă 1 and P t|T gw| “ ku “ Θpk´3{2q, we have Lk{P t|T gw| “ ku “ op1q.
Thus for k large enough, the logarithm of the above is

k logpCκq ´ C
1
κ logpkq ` yn log

ˆ

1´
C2κL

k

P t|T gw| “ ku

˙

ě
1

2
k logpCκq ´ yn

C2κL
k

P t|T gw| “ ku

ě
1

2
k logpCκq ´

3

2
nC2κL

k “
1

2
k logpCκq ´OpnL

kq.

By our assumptions, k “ Ωplog nq and Lk ď plog nq1´δ{n. Since Cκ ą 0, we have

1

2
k logpCκq ´OpnL

kq ě Ωplog nq ´O

ˆ

n
plog nq1´δ

n

˙

Ñ8,

which implies P tAn|Bnpynqu Ñ 0. �

Remark 4.12. If L ą 0 and κ “ 8, then Theorem 4.5 shows that

Kn{ logpnq
p
Ñ 1{ logp1{Lq.

But the second order term of Kn is sensitive to small modifications of the offspring
distribution, which makes it slightly more challenging to analyze the second order
term.
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4.3.3. When L “ 0. It is clear that L “ 0 if and only if ξ has infinite support
and lim infiÑ8 p0ppi{p0q

1{i “ 0, which implies lim supiÑ8 logp1{piq{i “ 8, along
the subsequence with pi ą 0. If in addition we have pi ą 0 for all i ě 0 and
logp1{piq „ fpiq for some f : r0,8q Ñ r0,8q with fpiq{i Ò 8, then we say that ξ
has an f -super-exponential tail. We have the following threshold for Galton-Watson
trees with such a property.

Theorem 4.13. Assume Condition A and let ξ have an f -super-exponential tail.
Let f´1 denote the inverse of f . Then for all constants δ ą 0, we have

(1) If kn ď f´1pp1´ δq log nq ` 1, then whp T gw
n contains all trees in T`

ďkn
as

fringe subtrees.
(2) If kn ě f´1pp1 ` δq log nq ` 1, then whp T gw

n does not contain all trees in
T`
ďkn

as fringe subtrees.

Therefore,
Kn

f´1plog nq

p
Ñ 1.

Proof : (i): Let k “ kn. Choose ε ą 0 such that p1 ´ δqp1 ` εq ă p1 ´ δ{2q. Since
logp1{piq „ fpiq, there exists an integer ipεq such that for all i ą ipεq,

log pi ě ´p1` ε{2qfpiq.

Let wi :“ log p0ppi{p0q
1{i. We have as k Ñ8,

min
ipεqăiăk

wi “ min
ipεqăiăk

"ˆ

1´
1

i

˙

logpp0q `
log pi
i

*

ě logpp0q ´ max
ipεqăiăk

p1` ε{2qfpiq

i

“ logpp0q ´
p1` ε{2qfpk ´ 1q

k ´ 1
Ñ ´8,

where we use that fpiq{i Ò 8. Since min1ďiďipεq wi is a constant, we have for large
k,

logLk :“ min
1ďiăk

wi ě logpp0q ´
p1` ε{2qfpk ´ 1q

k ´ 1
.

It follows from (4.1) that for k large enough,

log pmin
k ě logpp0L

k´1
k q

ě logpp0q ` pk ´ 1q log p0 ´ p1` ε{2qfpk ´ 1q.

ě ´p1` εqfpk ´ 1q,

where the last step uses fpkq{k Ò 8.
The assumption k ´ 1 ď f´1pp1´ δq log nq implies that fpk ´ 1q ď p1´ δq log n

and k “ Oplog nq. Thus

log pmin
k ě ´p1` εqp1´ δq log n ě ´p1´ δ{2q log n.

Thus npmin
k ě nδ{2. We have npmin

k {k Ñ 8. It follows from Lemma 4.4 that T gw
n

contains all possible trees of size at most k as fringe subtree whp.
(ii): Let T star

k´1 be the tree in which one node has degree k´1 and all other nodes

are leaves. Computations similar to above show that if k ´ 1 ě f´1pp1` δq log nq,
then nπpT star

k´1 q Ñ 0. Therefore T gw
n does not contain T star

k´1 whp. �
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Example 4.14 (The discrete Gaussian distribution). When pi “ ce´c
1i2 for some

appropriate positive normalization constants c and c1, we have L “ 0, and Theo-
rem 4.13 applies. Then

Kn
a

logpnq

p
Ñ

1
?
c1
,

as nÑ8.

Example 4.15 (The Cayley trees). A better example is the Galton-Watson tree

with offspring distribution ξ
L
“ Pop1q, i.e., the Cayley tree. It has pi “ e´1{i! and

logp1{piq „ i logpiq. It is easy to see that

Kn log log n

log n

p
Ñ 1.

Using (4.1) it is not difficult to verify that the tail drops so fast that the least
possible tree of size k is T star

k´1 . This is a special case of the following general
observation.

Lemma 4.16. Assume Condition A. If pi ą 0 for all i ě 0 and p
1{i
i Ó 0, then for k

large enough, pmin
k “ P

 

T gw “ T star
k´1

(

“ pk´1
0 pk´1. In particular, this is true for

ξ
L
“ Pop1q. In the latter case we have

log pmin
k “ logppk´1

0 pk´1q “ ´k log kp1`Op1{kqq.

5. Non-fringe subtrees

In this section we prove Theorem 1.6, the concentration of non-fringe subtree
counts in conditional Galton-Watson trees.

Given a tree T , let vpT q be the number of its internal nodes and let `pT q be
the number of its leaves. Recall that Nnf

T pT gw
n q :“

ř

uPT gw
n

JT ă T gw
n,u K, and that

rξn :“ prξn1 , . . . ,
rξnnq is a uniform random rotation of the preorder degree sequence of

T gw
n .

To simplify the notation, write v :“ vpT q and ` :“ `pT q. By Lemma 2.1, T has
a preorder degree sequence of the form

pa1, 0,a2, 0, . . . ,a`, 0q :“

pa1,1, a1,2, . . . , a1,rp1q, 0, a2,1, a2,2, . . . , a2,rp2q, 0, . . . , a`,1, a2,2, . . . , a`,rp`q, 0q
(5.1)

for non-negative integers rp1q, rp2q, . . . , rp`q and that

ÿ̀

s“1

rpsq “ v, as,t ą 0,
ÿ̀

s“1

as :“
ÿ̀

s“1

rpsq
ÿ

t“1

as,t “ v ` `´ 1. (5.2)

Therefore, if T ăT 1, then T 1 has a preorder degree sequence of the form

pa1, b1,a2, b2, . . . ,a`, b`q (5.3)

where b1, . . . , b` are preorder degree sequences of some plane trees. Thus each non-

fringe subtree of shape T in T gw
n corresponds to a segment of rξn of the form of

(5.3). If none of the segments overlap with each other, then we can permute them

into the form pa1, . . . ,a`, b1, . . . , b`q. Recall that rξn is permutation invariant, i.e., if
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we permute rξn, the result has the same distribution as rξn. Thus Nnf
T pT gw

n q should

be almost distributed like the number of the patterns pa1,a2, . . . ,a`q in rξn.
The problem with this argument is that non-fringe subtrees can overlap. But

as shown later in this section, under the assumptions of Theorem 1.6, the effect of
such overlaps is negligible.

We will use Dn to denote the set of preorder degree sequences of trees with size n.

Let rDn be the set of sequences that are cyclic rotations of sequences in Dn. Given

d :“ pd1, . . . , dnq P rDn, let degipdq :“ pdi, di`1, . . . , di`k´1q such that degipdq P Dk
for some k ě 1, where the indices are all modulo n. Lemma 2.1 guarantees that
such degipdq exists and is unambiguous. Let Tipdq be the tree with the preorder
degree sequence degipdq.

5.1. Factorial moments. Let pxqr :“ xpx´ 1q ¨ ¨ ¨ px´ r` 1q. For a random variable
X, EpXqr is called the r-th factorial moment of X. We give exact formulas for the
first and second factorial moments of Nnf

T pT gw
n q in this subsection.

Lemma 5.1. Assume that P t|T gw| “ nu ą 0. Let T be a tree. We have

E
“

Nnf
T pT gw

n q
‰

n
“ πnf pT q

P
 

Sn´vpT q “ n´ vpT q ´ `pT q
(

P tSn “ n´ 1u
.

Proof : Let v :“ vpT q and ` :“ `pT q. Let Ii “ JT ăTiprξ
nqK. Then Nnf

T pT gw
n q “

řn
i“1 Ii. By the permutation invariance of rξn, we have

E
“

Nnf
T pT gw

n q
‰

“ E

«

n
ÿ

i“1

Ii

ff

“ nP tI1 “ 1u .

Recall that T has a preorder degree sequence of the form pa1, 0, . . . ,a`, 0q sat-

isfying (5.2). Let A Ď rDn be the set of sequences such that rξn P A if and only
if I1 “ 1. In other words, d :“ pd1, d2, . . . , dnq P A if and only if deg1pdq “
pa1, b1, . . . ,a`, b`q for some b1, . . . , b` which are preorder degree sequences of trees.
By permuting deg1pdq into pa1,a2, . . . ,a`, b1, b2, . . . , b`q, we get a new sequence
d1 :“ pd11, d

1
2, . . . , d

1
nq P A1 where

A1 :“
!

pe1, e2, . . . , enq P rDn : pe1, e2, . . . , evq “ pa1,a2, . . . ,a`q
)

.

Such a permutation defines a mapping f : AÑ A1.
For every d1 P A1, condition (5.2) implies that in d1 after pa1, . . . ,a`q, there are at

least ` consecutive segments that are preorder degree sequences of trees, i.e., there
is a unique d P A with fpdq “ d1. Thus f is a one-to-one mapping. If d1 “ fpdq,

then P
!

rξn “ d
)

“ P
!

rξn “ d1
)

, since rξn is permutation invariant. Therefore we

have

P tI1 “ 1u “ P
!

rξn P A
)

“ P
!

rξn P A1
)

.
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Recall that by Lemma 2.3, rξn „ pξ1, . . . , ξn|Sn “ n ´ 1q, where ξ1, . . . , ξn are
i.i.d. copies of ξ and Sn “

řn
s“1 ξs. We have

P
!

rξn P A1
)

“ P
!

prξn1 ,
rξn2 , . . . ,

rξnv q “ pa1,a2, . . . ,a`q
)

“
P tpξ1, ξ2, . . . , ξvq “ pa1,a2, . . . ,a`q, Sn “ n´ 1u

P tSn “ n´ 1u

“ P tT ă T gwu
P tSn´v “ n´ v ´ `u

P tSn “ n´ 1u
,

where in the last step we use
ř`
s“1 as “ v ` `´ 1. �

To compute EpNnf
T pT gw

n qq2, we enumerate all the cases that T can appear as
overlapping non-fringe subtrees by constructing a set of trees tT ‘ T u as follows.
For trees T , S and node v P T , let T 1 “ SplaypT, v, Sq denote tree T with subtree
Tv replaced by S. Thus T 1v “ S . Let VpT q denote the internal nodes of T . Then
define the collection

tT ‘ T u “

»

–

ď

vPVpT q:Tv ăT

tSplaypT, v, T qu

fi

fl z tT u .

Note that |tT ‘ T u| ă vpT q. Also note that given T 1 P tT ‘ T u we can always find
a unique node v P VpT q such that T 1 “ SplaypT, v, T q.

Lemma 5.2. Assume that P t|T gw| “ nu ą 0. Let T be a tree. We have

E
“

pNnf
T pT gw

n qq2
‰

“ npn´ 2vpT q ` 1qπnf pT q2

ˆ
P
 

Sn´2vpT q “ n` 1´ 2pvpT q ` `pT qq
(

P tSn “ n´ 1u

` 2n
ÿ

T 1PtT‘T u

πnf pT 1q
P
 

Sn´vpT 1q “ n´ vpT 1q ´ `pT 1q
(

P tSn “ n´ 1u
.

Proof : Let v “ vpT q and ` “ `pT q. Let Ii be defined as in the proof of Lemma 5.1.
Since I1, . . . , In are indicator random variables and permutation invariant, we have

E
“

pNnf
T pT gw

n qq2
‰

“
ÿ

1ďi‰jďn

E rIiIjs “ n
n
ÿ

i“2

E rI1Iis .

The event I1Ii “ 1 happens if and only if T ăT1prξ
nq and T ăTiprξ

nq both

happen. Thus instead of summing E rI1Iis over i, we can sum P
!

rξn “ d
)

over

pairs pi,dq P t2, . . . , nu ˆ rDn that satisfy T ăT1pdq and T ăTipdq, i.e.,

deg1pdq “ pa1, b1,a2, b2, . . . ,a`, b`q, and degipdq “ pa1, b
1
1,a2, b

1
2, . . . ,a`, b

1
`q,

where pa1, 0, . . . ,a`, 0q is the preorder degree sequence of T and b1, b
1
1, . . . , b`, b

1
`

are preorder degree sequences of trees. Let A be the set of such pairs. Then
ř

iě2 E rI1Iis “
ř

pi,dqPA P
!

rξn “ d
)

.

For 1 ď r ď n, let Irpdq be the set of positions in d that are occupied by degrpdq,
i.e.,

Irpdq :“ tj mod n : r ď j ă r ` | degrpdq|u .
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Let Iin
1 pdq Ď I1pdq be the set of positions in d that are occupied by the parts of

deg1pdq that correspond to a1, . . . ,a`. Let Iout
1 pdq “ I1pdqzIin

1 pdq. Define Iin
i pdq

and Iout
i pdq accordingly. Let A1 Ď A be the set of pi,dq in A such that

A1 “
 

pi,dq P A : Iin
1 pdq X Iin

i pdq “ H
(

.

Let A2 :“ AzA1.
If pi,dq P A2, then Iin

1 pdq X Iin
i pdq ‰ H. In other words, either Ti is fringe

subtree of T1 and Ti is rooted at a node that corresponds to an internal node of
T (regarding that T1 is a non-fringe subtree of the shape T ), or vice versa. Thus
there exists a T 1 P tT ‘T u such that either T 1 ăT1pdq or T 1 ăTipdq. By symmetry,
we have

ÿ

pi,dqPA2
P
!

rξn “ d
)

“ 2
ÿ

T 1PtT‘T u

P
!

T 1 ăT1prξ
nq

)

“ 2
ÿ

T 1PtT‘T u

πnf pT 1q
P
 

Sn´vpT 1q “ n´ vpT 1q ´ `pT 1q
(

P tSn “ n´ 1u
, (5.4)

where the last step follows from Lemma 5.1.
Now consider pi, pd1, . . . , dnqq P A1. Arrange pd1, . . . , dnq in a cycle. Paint the

segment deg1ppd1, . . . , dnqq red and the segment degippd1, . . . , dnqq blue. One of the
three cases must be true: (i) I1pdq X Iipdq “ H — The red segment and the blue
segment do not overlap. (ii) Iipdq Ď I1pdq — The red segment contains the blue
segment. (iii) I1pdq Ď Iipdq — The blue segment contains the red segment. (Since
deg1pdq and degipdq are both preorder degree sequences, if I1pdqXIipdq ‰ H then
either (ii) or (iii) must happen. And since i ‰ 1 we cannot have Iipdq “ I1pdq.)
Figure 5.2 gives examples of the three cases.

Figure 5.2. Examples of three cases in A2.

We permute pd1, . . . , dnq as follows. For (i) and (ii), we first permute the red
segment from pa1, b1, . . . ,a`, b`q to pa1, . . . ,a`, b1, . . . , b`q. Then we permute the
blue segment of from pa1, b

1
1, . . . ,a`, b

1
`q to pa1, . . . ,a`, b

1
1, . . . , b

1
`q. It is clear this

can be done in case (i). And it is not difficult to see that in case (ii) the positions
that are occupied by the blue segment is completely contained by the positions that
are occupied by b`1 for some 1 ď `1 ď `. This means that Ti is a fringe subtree of
T1 and the root of Ti does not correspond to an internal node of T (regarding that
T1 is a non-fringe subtree in the shape of T ). So the first step of the permutation
moves the blue segment but does not change its contents and we can carry out the
second step without problem.
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In case (iii), we reverse the order of the two steps. After this the starting position
of the red segment may have changed. We rotate the new sequence such that the
red segment still starts from position 1.

In the end, we get a new pair pi1, pd11, . . . , d
1
nqq such that pd11, d

1
2, . . . , d

1
vq “

pa1, . . . ,a`q and pd1i1 , d
1
i1`1, . . . , d

1
i1`v´1q “ pa1, . . . ,a`q. Let B Ď tv`1, . . . , nuˆ rDn

be the set of such pairs. The above permutation defines a mapping f : A1 Ñ B.
Since given pi1,d1q P B, we can without ambiguity recover the red segment and blue

segment of d1, the mapping is reversible, i.e., f is one-to-one. Since rξn is permuta-

tion invariant, if pi1,d1q “ fpi,dq, then P
!

rξn “ d
)

“ P
!

rξn “ d1
)

. Therefore

ÿ

pi,dqPA1
P
!

rξn “ d
)

“
ÿ

pi,dqPB

P
!

rξn “ d
)

.

Given pi, pd1, . . . , dnqq P B, we can move the segment pdi, . . . , di`v´1q to the
position v ` 1 to get a new sequence pd11, . . . , d

1
nq P C, where

C :“
!

pe1, . . . , enq P rDn : pe1, . . . , e2vq “ pa1, . . . ,a`,a1, . . . ,a`q
)

.

Since there are n´2v`1 possible values of i, this permutation gives us a pn´2v`1q-

to-one mapping h : B Ñ C and if d1 “ hpi,dq, then P
!

rξn “ d
)

“ P
!

rξn “ d1
)

.

We obtain as usual
ÿ

dPC
P
!

rξn “ d
)

“ P
!

prξn1 , . . . ,
rξn2vq “ pa1, . . . ,a`,a1, . . . ,a`q

)

“ P tpξ1, . . . , ξ2vq “ pa1, . . . ,a`,a1, . . . ,a`q | Sn “ n´ 1u

“ P tpξ1, . . . , ξ2vq “ pa1, . . . ,a`,a1, . . . ,a`qu

ˆ
P tSn´2v “ pn´ 1q ´ 2pv ` `´ 1qu

P tSn “ n´ 1u

“ πnf pT q2
P tSn´2v “ n` 1´ 2pv ` `qu

P tSn “ n´ 1u
.

It follows that
ÿ

pi,dqPA1
P
!

rξn “ d
)

“
ÿ

pi1,dqPB

P
!

rξn “ d
)

“ pn´ 2v ` 1q
ÿ

dPC
P
!

rξn “ d
)

“ pn´ 2v ` 1qπnf pT q2
P tSn´2v “ n` 1´ 2pv ` `qu

P tSn “ n´ 1u
. (5.5)

The lemma follows by combining (5.4) and (5.5) with the following:

EpNnf
T pT gw

n qq2 “ n
n
ÿ

i“2

E rI1Iis “ n
ÿ

pi,dqPA

P
!

rξn “ d
)

“ n
ÿ

pi,dqPA1
P
!

rξn “ d
)

` n
ÿ

pi,dqPA2
P
!

rξn “ d
)

. �

5.2. Sequence of non-fringe subtrees. Let Tn be a sequence of trees. Let vn :“ vpTnq
and `n :“ `pTnq. In this subsection we prove Theorem 1.6, the concentration of
Nnf
Tn
pT gw
n q.
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Lemma 5.3. Assume Condition A. If |Tn| “ opnq, then

E
“

Nnf
Tn
pT gw
n q

‰

nπnf pTnq
Ñ 1.

Proof : |Tn| “ opnq implies that vn “ opnq and `n “ opnq. Therefore it follows
Lemma 2.6 and 5.1 that

E
“

Nnf
Tn
pT gw
n q

‰

nπnf pTnq
“

P tSn´vn “ n´ vn ´ `nu

P tSn “ n´ 1u
Ñ 1. �

Lemma 5.4. Assume Condition A. If |Tn| “ opnq and nπnf pTnq Ñ 8, then

EpNnf
Tn
pT gw
n qq2

pnπnf pTnqq2
Ñ 1.

Proof : Let v “ vn, ` “ `n and T “ Tn. Since |Tn| “ v ` `, we have v “ opnq
and ` “ opnq. If T 1 P tT ‘ T u, then vpT 1q ă 2v “ opnq and `pT 1q ă 2` “ opnq.
Therefore, it follows from Lemma 2.6 and 5.2 that

EpNnf
T pT gw

n qq2 “ npn´ 2v ` 1qπnf pT q2
P tSn´2v “ n` 1´ 2pv ` `qu

P tSn “ n´ 1u

` 2n
ÿ

T 1PtT‘T u

πnf pT 1q
P
 

Sn´vpT 1q “ n´ vpT 1q ´ `pT 1q
(

P tSn “ n´ 1u

“ p1` op1qqpnπnf pT qq2 `Opnq
ÿ

T 1PtT‘T u

πnf pT 1q.

Thus it suffices to show that n
ř

T 1PtT‘T u π
nf pT 1q “ opnπnf pT qq2.

Consider the superset A of tT ‘ T u that contains trees which can be obtained
by replacing a proper non-leaf subtree of T with another copy of T . (We do not
restrict where this replacement can happen as in the definition of tT ‘ T u.) Note
that |A| “ v ´ 1, since T has v internal nodes and one of them is the root.

If T 1 P A, then T 1 contains T as a fringe subtree. Thus πnf pT 1q ď πnf pT q. In
the case that v is bounded, we have

n
ÿ

T 1PA
P
 

T 1 ă T gw
(

ď nvπnf pT q “ Opnπnf pT qq “ opnπnf pT qq2.

Thus we can assume that v Ñ8.
For T 1 P A, if T 1 has at least 3v{2 internal nodes, call T 1 big, otherwise call it

small. Let Ab and As be the sets of big and small trees in A respectively.
If T 1 P Ab, then besides internal nodes that correspond to internal nodes of T , T 1

contains at least v{2 extra internal nodes. So we have P tT 1 ă T gwu ď πnf pT qp
v{2
max.

Since v Ñ8 and pmax ă 1, vp
v{2
max “ op1q. Using that |A| ă v, we have

n
ÿ

T 1PAb

P
 

T 1 ă T gw
(

ď nvπnf pT qpv{2max “ opnπnf pT qq.

Let Ti,j be a fringe subtree in T whose root is at depth i and is the j-th node of
this level. If replacing Ti,j with a copy of T makes a new tree T 1i that has strictly
less than 3v{2 internal nodes, then Ti,j must contain more than v{2 internal nodes.
Therefore, for each i, there is at most one possible such j. For an example of T 1i ,
see Figure 5.3.
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Figure 5.3. An example of T 11 for T with 7 internal nodes.

As T has v internal nodes, there are at most v ´ 1 possible i that can make Ti,j
a proper and non-leaf subtree. Since T 1i has at least i internal nodes besides these
in the copy of T that replaced Ti,j , we have πnf pT 1i q ď πnf pT qpimax. In summary,
we have

n
ÿ

T 1PAs

πnf pT 1q ď n
v
ÿ

i“1

πnf pT 1i q ď n
v
ÿ

i“1

πnf pT qpimax ď Opnπnf pT qq.

Therefore,

n
ÿ

T 1PtT‘T u

P
 

T 1 ă T gw
(

ď n
ÿ

T 1PAb

P
 

T 1 ă T gw
(

` n
ÿ

T 1PAs

P
 

T 1 ă T gw
(

“ opnπnf pT qq `Opnπnf pT qq “ opnπnf pT qq2. �

The condition that nπnf pTnq Ñ 8 is necessary, as shown by the following lemma.

Lemma 5.5. Assume Condition A. Let Lhpnq be a chain (complete 1-ary tree) of

height hpnq. Let Xn :“ Nnf
Lhpnq

pT gw
n q. If nP

 

Lhpnq ă T gw
(

Ñ µ P p0,8q as nÑ8,

then

EXn Ñ µ, Var pXnq Ñ µ
1` p1
1´ p1

, E
“

pXn ´ EXnq
3
‰

Ñ µ
3p21 ` 2p1 ` 1

p1´ p1q2
.

As a result, lim infnÑ8 dTV pXn,Popµqq ą 0.

Proof : Let h “ hpnq. Since nP tLh ă T gwu “ nph1 Ñ µ P p0,8q, we have h “
log1{p1 n ` Op1q. Lh has h internal nodes and one leaf. Thus it follows from
Lemma 5.1 and 2.6 that

EXn “ nπnf pLhq
P tSn´h “ n´ h´ 1u

P tSn “ n´ 1u
Ñ µ.

Since tLh ‘ Lhu “ tLh`i : 1 ď i ď h´ 1u, by Lemma 2.6,

ζ1 :“ 2n
ÿ

T 1PtLh‘Lhu

πnf pT 1q
P
 

Sn´vpT 1q “ n´ vpT 1q ´ `pT 1q
(

P tSn “ n´ 1u

“ 2n
h´1
ÿ

i“1

πnf pLh`iq
P tSn´h´i “ n´ h´ i´ 1u

P tSn “ n´ 1u

“ p1` op1qq2n
h´1
ÿ

i“1

ph`i1 “ p1` op1qq2nph1

h´1
ÿ

i“1

pi1 Ñ 2µ
p1

1´ p1
.
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We also have by Lemma 2.6,

ζ2 :“ npn´ 2hqπnf pLhq
2 P tSn´2h “ n` 1´ 2ph` 1qu

P tSn “ n´ 1u
Ñ µ2.

Therefore, it follows from Lemma 5.2 that

EpXnq2 “ ζ1 ` ζ2 Ñ 2µ
p1

1´ p1
` µ2.

Thus

Var pXnq “ E rpXnq2s ` E rXns ´ E rXns
2
Ñ µ

1` p1
1´ p1

.

So we have
Var pXnq

E rXns
Ñ

1` p1
1´ p1

ą 1.

With an argument similar to Lemma 5.2, we can compute E rpXnq3s, which yields

E
“

pXn ´ EXnq
3
‰

Ñ µ
3p21 ` 2p1 ` 1

p1´ p1q2
.

Since

E
“

|Xn ´ EXn|
3
‰

“ 2E
“

|Xn ´ EXn|
3 ˆ JXn ă EXnK

‰

` E
“

pXn ´ EXnq
3
‰

ď 2pEXnq
3 ` E

“

pXn ´ EXnq
3
‰

,

the above limit implies that

C :“ lim sup
nÑ8

E
“

|Xn ´ EXn|
3
‰

ă 8.

Now we can finish by following the method of Barbour et al. (1992, thm. 3B).

Let Zn
L
“ PopEXnq be a coupling of Xn that minimizes P tZn ‰ Xnu. Therefore we

have dTV pXn,PopEXnqq “ P tZn ‰ Xnu. Thus

Var pXnq ´ E rXns “ E
“

pXn ´ EXnq
2
‰

´ E
“

pZn ´ EXnq
2
‰

“ E
“

rpXn ´ EXnq
2 ´ pZn ´ EXnq

2s ˆ JXn ‰ ZnK
‰

ď E
“

pXn ´ EXnq
2 ˆ JXn ‰ ZnK

‰

ď P pXn ‰ Znq
1{3pE

“

|Xn ´ EXn|
3
‰

q2{3,

where in the last step we use Hölder’s inequality (Gut, 2013, pp. 129). So

dTV pXn,PopEXnqq “ P tXn ‰ Znu ě

ˆ

Var pXnq ´ EXn

Ep|Xn ´ EXn|
3qq2{3

˙3

.

Therefore

lim inf
nÑ8

dTV pXn,PopEXnqq ě
1

C2

ˆ

1` p1
1´ p1

˙3

ą 0.

Since EXn Ñ µ, we also have lim infnÑ8 dTV pXn,Popµqq ą 0. �

Remark 5.6. For the Possion distribution to be a good approximation of a sum of
indicator random variables, it is necessary that these indicators are almost indepen-
dent. But for Lhpnq, this is not true—if we find a chain of length hpnq at position
i, then with probability p1 we will find another such chain at position i ` 1. This
explains why Poisson approximation fails in this case.
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Proof of Theorem 1.6: (i): Since |Tn| “ vn ` `n, we have vn “ opnq and ` “
opnq. So by Lemma 5.3, ENnf

Tn
pT gw
n q „ nπnf pTnq. Thus nπnf pTnq Ñ 0 implies

Nnf
Tn
pT gw
n q

p
Ñ 0.

(ii): It follows from Lemma 5.3 and Lemma 5.4 that

Var
`

Nnf
TnpT

gw
n q

˘

“ EpNnf
TnpT

gw
n qq2 ` ENnf

TnpT
gw
n q ´ pENnf

TnpT
gw
n qq2

“ p1` op1qqpnπnf pTnqq
2 ` p1` op1qqpnπnf pTnqq

´ p1` op1qqpnπnf pTnqq
2

“ opnπnf pTnqq
2 “ opENnf

TnpT
gw
n qq2.

Thus Nnf
Tn
pT gw
n q{pnπnf pTnqq

p
Ñ 1. �

5.3. Complete r-ary non-fringe subtrees. Theorem 1.6 allows us to find the maximal
complete r-ary non-fringe subtree in T gw

n . We omit the proofs of the following
results due to their similarities to Lemma 4.2 and 4.3:

Lemma 5.7. Assume Condition A and let pr ą 0 for some r ě 2. Let sHn,r be the
height of the maximal complete r-ary non-fringe subtree in T gw

n . Then as nÑ8,

sHn,r

logrplog nq

p
Ñ 1.

Lemma 5.8. Assume Condition A and let p1 ą 0. Let sHn,1 be the height of the
maximal chain (complete 1-ary) non-fringe subtree in T gw

n . Then as nÑ8,

sHn,1

log1{p1 n

p
Ñ 1.

Example 5.9 (The binary tree). Recall that when p0 “ p2 “ 1{4 and p1 “ 1{2, T gw
n

is equivalent to a uniform random binary tree of size n. It follows from Lemma 5.8

that sHn,1{ log2 n
p
Ñ 1. This result was previously proved by Devroye et al. (1999).

6. Open questions

Part (iv) of Theorem 1.4 shows that dTV pNAnpT gw
n q,PopnπpAnqqq “ op1q, given

that πpAnq{πpTknq Ñ 0. We believe this condition may not be necessary. However,
to prove it seems to require a very different method.

Theorem 1.6 shows that if nπnf pTnq Ñ 8, then Nnf
Tn
pT gw
n q{nπnf pTnq

p
Ñ 1. We

believe that it is also true that pNnf
Tn
pT gw
n q ´ nπnf pTnqq{

a

nπnf pTnq converges in
distribution to a standard normal distribution. (Janson, 2016, thm. 1.9 has shown
that this is indeed the case when vpnq is bounded.) As shown in Section 5.2, the
overlapping of subtrees does not affect the second moment of non-fringe subtree
counts much. Thus we may be able to compute high moments in similar ways and
apply Lemma 3.6 to prove a central limit theorem.

Theorem 1.4 generalizes Theorem 1.3 by considering the number of fringe sub-
trees whose shapes belong to a set of trees Tkn instead of being a single tree Tn.
It may be possible to generalize Theorem 1.6 in similar way, i.e., we consider the
non-fringe subtrees whose shapes belong to a set of trees Tkn instead of being a
single tree Tn.
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Another problem may be of interest is to get a non-fringe version of Theorem
4.5, i.e., what are the sufficient conditions for all (or not all) trees of size at most k
to appear in T gw

n as non-fringe subtrees.
Let T be a tree and v be a node of T . Recall that Tv denotes the fringe subtree

rooted at v. If by removing some or none the subtrees of Tv, we can make it
isomorphic to another tree T 1, then we say that T contains an embedded subtree of
the shape T 1 at v. A more challenging open question is to determine the size of the
maximum complete r-ary embedded subtree in large conditional Galton-Watson
trees.
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