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Abstract. We study the conditions for families of fringe or non-fringe subtrees to
exist with high probability (whp) in 7,8%, a Galton-Walton tree of size n. We first
give a Poisson approximation of fringe subtree counts in 7,8%, which permits us
to determine the height of the maximal complete r-ary fringe subtree. Then we
determine the maximal K, such that every tree of size at most K, appears as a
fringe subtree in 7,8% whp. Finally, we show that non-fringe subtree counts are
concentrated and determine, as an application, the height of the maximal complete
r-ary non-fringe subtree in 7,8%.

1. Introduction

In this paper, we study the conditions for families of fringe or non-fringe subtrees
to exist whp (with high probability) in a Galton-Walton tree conditional to be of size
n. In particular, we want to find the height of the maximal complete r-ary fringe
and non-fringe subtrees. We also want to determine the threshold k,, such that all
trees of size at most k, appear as fringe subtrees. In doing so, we extend Janson
(2016) result on fringe subtrees counts and prove a new concentration theorem for
non-fringe subtree counts.

Let ¥ be the set of all rooted, ordered, and unlabeled trees, which we refer to as
plane trees. All trees considered in this paper belong to T. (See Janson, 2012, sec.
2.1 for details.)

Given a tree T € ¥ and a node v € T', let T}, denote the subtree rooted at v. We
call T, a fringe subtree of T. If T, is isomorphic to some tree T’ € T, then we write
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T’ = T, and say that T has a fringe subtree of shape T” rooted at v, or simply T'
contains 7" as a fringe subtree.

On the other hand, if T, can be made isomorphic to T” by replacing some or
none of its own fringe subtrees with leaves (nodes without children), then we write
T’ < T, and say that T has a non-fringe subtree of shape T” rooted at v, or simply
T contains T” as a non-fringe subtree. (Note that 7" = T, implies that 77 < T,.)
We also use the notation T < T to denote that T has a non-fringe subtree of shape
T’ at its root.

Let ¢ be a non-negative integer-valued random variable. The Galton-Watson
tree T8Y with offspring distribution £ is the random tree generated by starting
from the root and independently giving each node a random number of children,
where the numbers of children are all distributed as £&. The conditional Galton-
Watson tree 7,8V is T8W restricted to the event |T8%| = n, i.e., T8" has n nodes.
The comprehensive survey by Janson (2012) describes the history and the basic
properties of these trees.

In the study of conditional Galton-Watson trees, the following condition is as-
sumed throughout the paper:

Condition A. Let 72" be a conditional Galton-Watson tree of size n with offspring
distribution &, such that E€ = 1 and 0 < 02 := Var(§) < . Let T8% be the
corresponding unconditional Galton-Watson tree.

‘We summarize our notation:

- ¥ — the set of all rooted, ordered and unlabeled trees (plane trees)

- T —atreein ¥

- T, — a fringe subtree of T rooted at node v e T

- £ — a non-negative integer-valued random variable with E€¢ = 1 and 0 < 02 =
Var (§) < o

- pi — P{{ =i}

- h — the span of &, i.e., ged{i = 1:p; > 0}

- 78" — an unconditional Galton-Watson tree with offspring distribution &

- TEBY — T8Y given that |T8%| =n

- T80 — a fringe subtree of 7,8% rooted at node v € 78"

oy — a fringe subtree of 7,8™ rooted at a uniform random node of 78"

- (Th)n=1 — a sequence of trees

- T, — the set of all trees of size n

- § — aset of trees

- L, —theset {TeT:|T| <n,P{T8 =T} >0}

- (Ap)n>1 — a sequence of sets of trees

- Ns(T,8%) — the number of fringe subtrees of 7,8% that belong to S

- w(S) — P{T&" e S}

- NRE(TEY) — the number of non-fringe subtrees of 7,8% of shape T

- m(T) — P{T < T8}, the probability that 78" has a non-fringe subtree 7' at
its root

Remark 1.1. If p; = 0, then there exist positive integers n such that P {|78%| = n}
= 0. For such n, 7,8% is not well-defined. But it is easy to show that P {|T8Y| = n}
> 0 for all n = ng with n —1 =0 (mod h), where h is span of £ and ng depends
only on & (Janson, 2012, cor. 15.6). Therefore, in this paper, for all asymptotic



Large fringe and non-fringe subtrees in conditional Galton-Watson trees 581

results about 78" and 7,8, the limits are always taken along the subsequence
with n —1=0 (mod h).

Extending a result by Aldous (1991), Janson (2012, thm. 7.12) proved the fol-
lowing theorem:

Theorem 1.2. Assume Condition A. The conditional distribution L(T2y|TEY)
converges in probability to L(T&Y). In other words, for all T € ¥, as n — o0,
Nr(TE™
Nr(TE) _p(7ay — TimEny LpTes — 7). (L.1)
n
Later Janson (2016) strengthened the above result, proving the asymptotic nor-
mality of Np(7,8%) by studying additive functionals on 7,8% (Janson, 2016).
A natural generalization of Np(7,8%) is the fringe subtree counts Np, (78W)
where T,, € T is a sequence of trees instead of a fixed tree T'. Let Po(\) denote a
Poisson random variable with mean A. We have:

Theorem 1.3. Assume Condition A. Let w(T) = P{T& =T} and let k, —
0, k, = o(n). Then
sup  dry (No(TEY), Po(n(T))) = O(phiaekil?) = o(1), (12
T4IT| =k

where ppmax = max;>op; anddry (-, - ) denotes the total variation distance. There-
fore, letting T,, be a sequence of trees with |Ty,| = ky, we have as n — o

(i) If nw(T,) — 0, then Nt (T8Y) =0 whp.
(i) If nm(T,) — p e (0,50), then Ny, (TEY) 5 Po(u).
(iii) If nw(T,,) — oo, then
Nz, (T#Y) — nr(Ty)

d
nm(Ty) NGO,

where N(0,1) denotes the standard normal distribution, and < denotes
convergence in distribution.

Theorem 1.3 can be partially generalized as follows:

Theorem 1.4. Assume Condition A. Let Ty, be the set of all trees of size ky,
where k, — o and k, = o(n). For § < Ty, let n(S) = P{T8" €S} and
Ns(TEY) = X perewlTEY € S]. Therefore, letting (An)n=1 be a sequence of sets
of trees with A, < %y, , we have:

(i) If nt(Ay) — 0, then N4, (T8Y) =0 whp.
(i) If nm(An) — pe (0,0), then N, (TEY) S Po(u).
(i1i) If nw(Ay) — o, then
N, (TE%) —nm(A) o
nr(Ay)
() If m(A,)/7(Zk,) — 0, then
Tim dry (N, (T5%), Po(n(A,))) = 0.

(0,1).

Remark 1.5. Ng(T28") can also be interpreted as the number of fringe subtrees
with certain properties. For example, Nz, (7,8%) is the number of fringe subtrees
of size k. The above theorem together with Lemma 2.4 shows that, as long as
ky = 0(n®?) then we have a central limit theorem for Ng, (7,8%).
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The proof of Theorem 1.3 is given in Section 3. It uses many ingredients from
previous results on fringe subtrees, especially from Janson (2016). In particular,
Lemma 6.2 of Janson (2016) makes the computation of the variance of N, (7,8V)
quite easy, which is crucial for the proof.

However, this approach cannot be adapted to prove the convergence of total
variation distance for N4, (7,8%) in (iv) of Theorem 1.4 without assuming that
7(An)/m(Zk, ) — 0. In particular, it does not work for Ng, (78%), i.e., the number
of fringe subtrees of size k,,. Therefore, to show (i)—(iii) of Theorem 1.4, we instead
compute the factorial moments of N4, (7,8%). We sketch the proof of the theorem
at the end of Section 3.

Binary search trees and recursive trees are also well-studied random tree models
(see Drmota (2009)). Many authors have found results similar to Theorem 1.3 for
these two types of trees, see, e.g., Feng et al. (2008); Fuchs (2008); Devroye (1991,
2002/03); Flajolet et al. (1997). For recent developments, see Holmgren and Janson
(2015).

We say that a tree T is possible if P{T8"¥ =T} > 0. As an application of
Theorems 1.3 and 1.4, we ask the following question — when does 72" contain
all possible trees within a family of trees (possibly depending on n). As shown in
Subsection 4.1, this is essentially a variation of the coupon collector problem.

In Subsection 4.2 we answer the above question for the set of complete r-ary trees.
Let H,,, be the maximal integer such that 72" contains all complete r-ary trees
of height at most H,, , as fringe subtrees. Lemma 4.2 shows that H, , —log, logn
converges in probability to an explicit constant.

Let S;k be the set of all possible trees of size at most k. Let K,, = max{k :
T;k c uveTrgwﬂg}"}, i.e., K, is the maximal k such that every tree in S;k appears
in 78" as fringe subtrees. In Subsection 4.3, we show that, roughly speaking, if the
tail of the offspring distribution does not drop off too quickly, K,,/logn converges in
probability to a positive constant. Otherwise, we have K,,/logn 2.0. For example,
for a random Cayley tree, we have K, loglog(n)/log(n) 2> 1. For many well-known
Galton-Watson trees, we also give the second order asymptotic term of K,,.

Non-fringe subtrees are more complicated to analyze. However since on aver-
age fringe subtrees in 72" behave like unconditional Galton-Watson trees when
n is large, the number of non-fringe subtrees of shape T should be more or less
nP {T < T&"}. The following theorem is a precise version of this intuition.

Theorem 1.6. Assume Condition A. Let 7 (T) := P{T < T8%}. Let N (T8W)
= Yperew [T <TEY]. Let Ty, be a sequence of trees with |T,,| = ky, where k, — o0
and k, = o(n). We have
(i) If ne™¥(T,) — 0, then NRF(T8") 5 0.
(ii) If nm™f(T,,) — oo, then N (TEW)/(na™ (T},)) 5 1.
Chyzak et al. (2008) studied non-fringe subtrees for various random trees, in-
cluding simply generated trees. They proved that if for all n we have T}, = T where

T is fixed, then N}‘f(ﬁlgw) has a central limit theorem. However, Theorem 1.6
cannot be simply derived from their result as our 7;, depends upon n.

Remark 1.7. Tt is tempting to try to prove that if n7™f(T},) — u € (0,00), then

NPE(TE™) < Po(u). This is true for fringe subtrees. Unfortunately, it is not true
in general for non-fringe subtrees. See Lemma 5.5 in Section 5.2.
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In Section 5, we prove Theorem 1.6 and apply it to study the maximal complete
r-ary non-fringe subtree in 7,8%. The paper ends with some open questions in
Section 6.

2. Notations and Preliminaries

2.1. Conditional Galton-Watson trees. The preorder of nodes in a tree T is the
order in which they are visited through the following Depth-First-Search procedure:

(1) Let S be an empty stack.

(2) Put the root of T at the top of S.

(3) Remove the node (v) at the top of S.

(4) Put the children of v at the top of S in order of appearance.
(5) If S is empty, terminate. Otherwise go to step 3.

Let vy,...,v; be the nodes of T in preorder. Let d; be the degree (the number
of children) of v;. We call (dy,da,...,dy) the preorder degree sequence of T. Let
N :={1,2,...} and let Ny := {0} U N. Tt is well-known that (see Janson (2012, lem.
15.2)):

Lemma 2.1. A sequence (di,da,...,dy) € N is the preorder degree sequence of
some tree if and only if it satisfies
I di=j 1<j<k-1
D di =k—1

Figure 2.1 gives a demonstration of Lemma 2.1.

A
3

S di—jforj=1,...,7

The degree sequence
(d1,...,d7) = (2,1,0,3,0,0,0)

FIGURE 2.1. Example of preorder tree degree sequence.

Let Dy < Né’ be the set of all preorder degree sequences of length k. Observe:

Corollary 2.2. If (di,da,...,dy) € Dy, then it is impossible that there exists 1 <
k' < k such that (dl, dz, - ,dk/) € Dy

Let & = (&,...,&") be the preorder degree sequence of T78%. Let E“ =
(&r,...,&") be a uniform random cyclic rotation of £€™. Let &1, o, . .. be i.i.d. copies

of & Let S, :== > | &. The next lemma is a well-known connection between £
and &1, ...,&, (see, e.g., Otter, 1948, Kolchin, 1986, Dwass, 1969 and Pitman, 1998).
For a complete proof, see Janson (2012, cor. 15.4).
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Lemma 2.3. Assume that P {|T8Y| =n} > 0. We have

L EME (. 6| Sp=n—1),

where £ denotes “identically distributed” and the right-hand-side denotes
(&1,...,&n) restricted to the event that S, =n — 1.

Let p; == P{¢ =i}. Let h be the span of &, i.e., h == ged{i = 1 : p; > 0}. We
recall the following result (see Janson, 2016, 4.3 or P\()l(hm 1986):

Lemma 2.4. Assume Condition A. We have

h
P{TEY| =n} ~ n3/2,
2mo?

asn — o0 withn —1=0 (mod h).

The following lemma is a special case of Janson (2016, lem. 5.1). We nonetheless
give a short proof for later reference in the paper.

Lemma 2.5. Assume P{|T8%| =n} > 0. Let T € T, with 1 <k < n.
(i) Let Np(T8Y) = 2perew[TEY = T Then

gw —n—
E[NT(,];L )] _ W(T)P{Snik n k}
n P{S,=n—-1}
(ii) Let Ng (TEY) = Lyeraw [T = k]. Then
E [V gw P{Sh—xr=n—k
[Nz, (T£%)] — n(TH) {Sn—k =n—k}
n P{S,=n—-1}
Proof: Let (di,...,d;) be the preorder degree sequence of T. Recall that
(&r,...,&n) is the preorder degree sequence of T8W. Let

[[fn dy, &} i+1 = =d,... ,fin+k—1 = dk]]v

where the indices are taken modulo n.

Note that if n — k + 1 < i < n, then it is impossible that I, = 1, because the
length of the preorder degree sequence of the fringe subtree 7,8} must be strictly
less than k. Therefore, if I, > 1 and n — k + 1 < ¢ < n, then there exists a k' < k
such that (di,ds,...,d}) is also a preorder degree sequence, which is impossible by
Corollary 2.2.

Therefore for all 1 < i < n, I; = [T,, = T] and Np(T,8%) = 3", I;. Recalling
that (g{‘, e ,E:;) is a uniform random rotation of (. ..,£") and using Lemma 2.3,
we have

n

E [N (TE")] —ElZ ]=EP{&‘:dl,g;Ll=d2,...,£i"+k_1=dk}
i=1

=1

ZP{& =di, &1 =do, . &ivk—1 =di | Sp =n—1}
i—1

= {51:d17£2:d27" 7€k:dk|sn:n_1}

{[51 _d1a§2 _d27"'7£k =dk]ﬁ[sn=n—1]}
P{S,=n—-1} '
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Since (di,...dy) is a preorder degree sequence, Zle d; = k — 1 by Lemma 2.1.
Therefore, using the fact that &1, ..., &, are independent, the last expression equals

JPUG =di,. . & =di] 0 [Sp_r =n — K]}

P{Sn,kzn—k'}
P{S,=n—1} '

P{S,=n—-1}

— nP {T&Y = T}

Thus part (i) is proved. Part (ii) follows by summing the equality in (i) over all
Te Tk. [l

The following approximations are useful for estimating the expectation and the
variance of the number of fringe subtrees.

Lemma 2.6 (Lemma 5.2 and 6.2 of Janson, 2016). Assume Condition A and let &
have span 1. We have:
(i) Uniformly for all k with 1 < k < n/2,

P;fg;k=:nn_1];} =1+ O(i) + o0 (nil/z) .

(i) Uniformly for all k with 1 < k < n/4,

P{Sp_or=n—2k+1} (P{Sh_r=n—k}’
P{S,=n—1} _< P{Sn=n—1})

1 1 k k2
202+o< )+O( 3/2+n2>. (2.2)

Remark 2.7. As shown in the proof of Lemma 2.5 NT(TgW) is equivalent to the
number of patterns dy,...,dr| in the cycle 51 Yo ,fn. Thus if h (the span of &) is

greater than one, we can divide dy, ..., dp and EN{‘, e ,5;} by h without changing
the value of Np(T78%). Therefore, when studying subtree counts, we can always
assume that h = 1.

2.2. Poisson Approzimation. Let Bi(n,p) denote binomial (n, p) distribution. It is

well known that if X,, £ Bi(n, A/n), then X,, converges in distribution to Po(}).
This follows from the following stronger result (see Barbour et al., 1992, pp. 8 for
a proof):

Lemma 2.8. If X £ Bi(n, p), then
drv (X,Po(EX)) <p

The following Lemma is a special case of Roos (2003, thm. 1), which applies
to mixed Poisson distributions. Barbour et al. (1992, thm. 1.C) proved a similar
result using Stein’s method. We include our proof for its simplicity.

Lemma 2.9. If X £ Po(u) and Yy £ Po(v), then

i (67) € V= V9] =
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Proof: Let z; = P{X =i} and y; = P{Y = i}. We have

1 [ee] 1 [ee]
dry (X,Y) =5 Dl — vl = 5 T IVE = VUil (Vi + i)
=1 =1

N

0 0 1/2
(le/fz Vil? ZxﬁJr\/E)

where the second step uses the Cauchy-Schwartz inequality. An easy calculation
shows that

2

Thus we have

drv (X,Y) < \/1 —exp (— (vt — V7)?)
(We—=+vv)2  (byl-e"<u)
= V=l 0
Combining the two, we have:

Lemma 2.10. Let X and M be non-negative integer-valued random variables. If
conditioned on the event M = m, X is binomial (m,p), then

pVar (M)

dry (X, Po(EX)) <p+ i

Proof: Let zZE Po(EX). We have

dTv(X,Z>:fZ\P{X—z}—P{Z—z}l
=0
g—ZZP{M m}P{X =i|M=m}-P{Z=i}|
i=0m=0

= 2 P{M = m} dTV (Bl(m,p),Z)

m=0

< Y P{M = m}drv (Bi(m,p),Po(mp))

mz=0

+ Y. P{M = m} dry (Po(mp), Po(EX)).

m=0
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By Lemma 2.8, the first sum is at most p. Using Lemma 2.9 and the fact that
EX = pEM, the second sum is at most

_ oy [EX —mp| _ _ o [EM —m]|
m%:OP{M—m} N _@EOP{M_ VT

 E[EM - M)
“VrEr

3. Sequences of fringe subtrees

In this section we prove Theorem 1.3 and sketch the proof of Theorem 1.4.
Recall that w(T') :== P{78% =T}, and Nr(n) == [X crew T8 = T7. Let k = ky,.
Theorem 1.3 states that

sup dry (N7 (T.2Y), Po(nn(T))) = o(1),

TeX
whenever k = o(n) and k — co. If 7(T') = 0, then dpy (Np(T,8%),Po(nn(T))) =0
deterministically. Thus we can assume that P {78" € T} = P {|T8%| =k} > 0 for
all n, and that the above supremum is taken over all T € ¥}, with 7(7) > 0.

Recall that Ng, (T8Y) = [X,eqew Tv € Ti], ie., Ng, (T,8V) is the number of
fringe subtrees of size k in T,8%. Also recall that 7(S) := P{T8" € §}. We first
compute the expectation and variance of Ng, (7,8%). Then Lemma 2.10 can be
applied to N, (7,8%) and Ns(T8W) for S € T}, to show the following lemma, from
which Theorem 1.3 follows easily:

Lemma 3.1. Assume that k =k, = o(n) and k — oo. We have as n — o0,

p Lrv (Ns(TE™). Po(nm(S)))
s, (S)/m(Tk) + /7 (S)/7(Th)

Lemma 3.2. Let k =k, = o(n). We have

S5 |- (E) ool

EN((’(S)WM :o(§)+o(nl/z).

k1/4

<1+ o(k7%?) + O(\/ﬁ).

sup
TeX

and

sup
ScTy

Proof: Since k = o(n), we have k < n/2 for n large. Thus by Lemma 2.5 and 2.6,
uniformly for all T € Ty,

ENT(TE")
n

P{Sn—k :n_k}
P{S,=n—-1}

_ (T) (o(i) + o(n_l/Q)) .

Summing over all trees T" with T' € S gives the second part of the lemma. O

~ (1) = (1) -1
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Lemma 3.3. Assume that k = k, = o(n) and k — co. We have

Var (N<, (7,8%)) _a k
e <14 ok + 0]~ ).
ENz, (T27) ol )+ n
Proof: Recall that E“ = (g{‘, e ,57‘:) is a uniform random rotation of &, the

preorder degree sequence of 78%. Let
Ji =67 €40 Eli1) € Di].-

Then with an argument simliar to Lemma 2.5, we have Nz, (78%) = 31" | J;.
Using the fact that Jy, ..., J, are identically distributed, Lemma 2.5 and 2.6, we
have

P{Sn,k=’n—k}
P{S,=n—1} '

~ 1
EJ, = LENg, (TE") = P{|T5"| = )
Similar to the proof of Lemma 2.5, we have

EJiTer = P{@E .8 € D @y 8 € D
= P{(€17a£k) EDka(§k+1a"'a§2k) EDk ‘ S’n =n—- 1}
oP{Sh—ar =n—2k+1}

= (%) P{S,=n—1} ’

where &1, &, ... are 1.i.d. copies of £ and S, = X", &.

Consider two indices ¢ # j. If |i — j| < k or |i + n — j| < k, then Ejljj = 0. This
is because two fringe subtrees of size k& cannot overlap. So for such i and j we have
Cov (1. J;) =€[ ;| -€|T|E[T] <0.

On the other hand, if |i — j| > k and |i + n — j| > k, ie., (gn,...,§n+k_1)
and (E;?, . N;-‘+k_1) do not overlap, then Cov (jzjj) = Cov (j]_jk;Jrl) since E“ is

permutation invariant. By Lemma 2.4, we have 7(T}) = ©(k~%/?). Therefore

Cov (51, J,M) —E [flfk+1] —E [fl] E [J,m]

P{Spox=n—2k+1} [(P{Sp_r=n—k}’
P{S,=n—1} _( P{Sn—n—1}>

1 1 k k? .
0'277, (n) + O<7’L3/2 + 112)] (Lemma 2())

(%) [o(k_3/2) + o(’“_;/;’“ N k‘?’:kzﬂ

£ () o yE)).

Il
A
%)
=~
T
|
+
QS

N
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Therefore,

Var (Nz, (7,8%)) = Z Cov (j“j) + Zf:Var( )

1<i#j<n i

N
<
—
\

on (o) s3] (1[5
B (o) o)) e[
(1 +0 (zﬁ/?) + 0(\/%)) E[Ne, (TE)]. O

The following observation allows us to apply Lemma 2.10 to finish the proof.

N

Lemma 3.4. Let event E,,, = [Nz, (T,8Y) = m]. Conditional on E,,, the m fringe
subtrees of size k in T2 has the distribution of m i.i.d. copies of T;E". Thus for
S € Ty, conditional on Ey,, Ns(TEW) is binomial (m,n(8S)/m(Zk)).

Proof: Conditional on Ej, the probability that 7,8% has T € T}, as the only fringe
subtree of size k must be proportional to m(7T"). And since this fringe subtree can
only have size k, this probability in fact must be 7 (T)/7(%x). In other words,
this fringe subtree has the distribution of 7,2%. It is not difficult to extend this
argument to F,, with m > 1. O

Proof of Lemma 3.1: Let S € Tp. Let X = Ns(78%), M = Nz, (7,8%) and p =
m(8)/m(%)). By Lemmas 2.10, 3.3, and 3.4, we have

drv (X, Po(EX)) < p+ iy ) < (1 ) <1+0( 3/2>+o<\/§>>.

By Lemma 2.9, we have
|nm(S) — EX|
nm(S)

SRR
< /(%) (O (i) +o (n‘l/Q))

dTV (PO(EX), PO(TMT(S))) <

k1/4
= 0(\/ﬁ> + o(k3/) (By Lemma 2.4).
The lemma follows from triangle inequality. O

Proof of Theorem 1.3: Let k = k,. For T € Ty, we have 7(T) < p£ ... Therefore,
by Lemma 2.4, 7(T)/7(%Tk) < pk.../O(k™3?) = o(1). Tt follows from Lemma 3.1
that

dvy (No(TE), Po(nn(T))) < (1 + o(1) (j@) E f(g?)) = ol1).

Statements (i)—(iii) follows immediately. O
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3.1. The sketch of the proof of Theorem 1./. Part (iv) of Theorem 2.4 follows di-
rectly from Lemma 2.9. However, to show (i)-(iii) of Theorem 1.4, we instead need
the following lemma (whose proof is quite similar to that of Lemma 3.3):

Lemma 3.5. Let r =r, = o(y/n) and k = k,, = o(n/r?) with k — . We have
sup sup 7E(N3(7;gw))s
SCSTy s<r (nm(S))*
where (x)s :=x(x —1)---(x — s+ 1).
Thus if nw(A,) — u € [0,00), then E(N4, (T8%))s — u®, for all fixed s. It is
well-known that this implieslpN 4, (7,8%) LA Po(p) (see van der Hofstad, 2017, thm.

2.4). Part (i) and (ii) of Theorem 1.4 follows immediately. And part (iii) comes
from the following result:

-1 = O(l)a

Lemma 3.6 (Gao and Wormald, 2004, thm. 1). Let (X,)n>1 be a sequence of
integer-valued random variables. If there exists a sequence u, — o0 such that

E(Xn)s

sup -1 —0,
S<y/In 2543
then we have x
An ~ Hn d N(0,1).

N

4. Families of fringe subtrees

In this section, we apply Theorem 1.3 and 1.4 to study the conditions for 7,8%
to contain every tree that belongs to a family of trees.

4.1. Coupon collector problem. As shown later, our problem is essentially a vari-
ation of the famous coupon collector problem—if in every draw we get a coupon
with a uniform random type among n types, how many draws do we need to collect
all n types of coupons? The next lemma is about a generalization of this problem
needed later. For the original problem, see Erdds and Rényi (1961) and Flajolet
et al. (1992). For more about the generalized version defined below, see Neal (2008).

Lemma 4.1 (Generalized coupon collector). Let X,, be a random wvariable that
takes values in {1,...,n}. Let p,,; = P{X, =i}. Assume that p,; > 0 for all
1<i<n. Let X;,1,X52,... be i.i.d. copies of X,,. Let

Nn = 1nf{z >1: |{Xn,l7Xn,27 . -;Xn,i}| = TL}
Let m,, be a sequence of real numbers. We have

n 1
1= Y (1= po)™ < PN, <o} < o .
i=21 " " " Zi:l(l = Pni)"n
Proof: Let m =m,,. Let Z,; = [i ¢ {Xn1,---,Xnm}]- Then N,, < m if and only
if Z, =30 Zn; =0, ie,P{N,<m}=P{Z,=0}=1-P{Z, >1}.
The first inequality of this lemma follows from the following:

n

P{Z,>1}<EZ, =Y EZ,; = Y P{a/ Xy, #i} = > (1—pn)".
i=1 i=1 i=1
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For 1 < i # j <n, we have

E [Zn,iZn,j] -E [Zn,i] E [Zn,j] = (1 —Pn,i — pn,j)m - (1 7pn,1l)m(1 7pn,j)m
= 0-pm (1= 22 - p]

a 1- Pn,i
< 0.
Therefore
Var(Zn) = . E[ZniZn;j] = E[ZnilE[Zn;]
1<i,j<n
= Y, (E[ZniZn;] —E[Zni]E[Z0;])
1<i#j<n
+ Y (ElZuil ~ElZ0i]’)
1<i<n
<EZ,.

Thus by Chebyshev’s inequality, as in the second moment method (see e.g., Alon
and Spencer, 2008, chap. 4), we have
Var (Z,,) 1 1

P{Z,=0}<P{|Z,—EZ, >EZ,} < < - 0O
{ } {| | } (EZn)2 EZn Z?:l(l —pn,i)m"

4.2. Complete r-ary fringe subtrees. A tree T is called possible if 7(T) > 0. Let
r > 0 be a fixed integer and h,, be a sequence of positive integers. A simple
application of Theorem 1.3 is to find sufficient conditions such that whp every (or
not every) possible complete r-ary tree appears in 7.8V as fringe subtrees.

Let h,, — o0 be a sequence of positive integers. Let Ay, » be the set of all possible
complete r-ary trees of height at most h,,. Let

H, , =max{h: 72" contains all trees in Ay, , as fringe subtrees} .

Lemma 4.2. Assume Condition A and p, > 0 for some r = 2. Let

1 1 1
o, =log, | log — + log — | .
Do r—1 Dr
Let w, — 0 be an arbitrary sequence.

(i) If hy, <log,(logn —wy) — a,, then whp TEY contains all trees in Ay, » as
fringe subtrees.

(i) If hy, = log,(logn + wy) — ., then whp TBY does not contain all trees in
Ap. r as fringe subtrees.

)y

Also,

H, , —log, logng — Q.

Proof: Let T, **¥ denote the complete r-ary tree of height h,,. Note that if T), **¥

appears in 7,8V as a fringe subtree, then every tree in Ap,, , also appears in 78" as

a fringe subtree. The tree TX-2Y has /,, := r"» leaves and v,, := (r» —1)/(r —1) =

(¢, —1)/(r — 1) internal vertices, which all have degree r. Thus we have
m(T3 ) = PATEY = T} = propy

T
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If h,, <log,.(logn — w,) — a,., then

0 _h logn — wy,
n X o .
Therefore
1 1 L + /4,1 !
08 — v = Uy log — og —
g W(T;;ary) 2 g pr n g p()
{4, —1 1 1
= log — + ¢, log —
r—1 Dr Po

1 1 1
=4, < log — + log ) +0(1)
r—1 Pr Po
1 - Wn
< BT ar o(1)
Oy
=logn — w, + O(1).

Thus log(nz (T, *Y)) = w, + O(1) — o, which implies that nx (T, *¥) — o0. It
follows from Theorem 1.3 that NT;:ry (78%) 5 0. Thus (i) is proved.

Similar computations show that the assumptions of (ii) implies that n (T **)
— 0. Thus Nrg-aey (78%) %0 by Theorem 1.3. The last statement of the lemma
follows directly from (i) and (ii). O

We have a similar result for the set of 1-ary trees (chains) of height at most h.
The proof is virtually identical to the previous lemma and we leave it to the reader.

Lemma 4.3. Assume Condition A and p; > 0. Let w, — o be an arbitrary
sequence. We have:

(i) If hy, < (logn — wy,)/log p%, then whp TEY contains all trees in Ay, 1 as
fringe subtrees.

(i) If hy, = (logn + wy,)/log ;n%’ then whp TBY does not contain all trees in
Ap, 1 as fringe subtrees.

Therefore
Hn,l

o
logl/pl (n)

4.2.1. Binary trees. Consider 78" with a binomial (2,1/2) offspring distribution,
ie, po = p2 = 1/4 and p; = 1/2. Let T,Pi® be T8™ with each degree-one node
labeled of having a left or a right child uniformly and independently at random.
Then 7,P™® is a tree in which nodes have a left position and a right position where
child nodes can attach, and each position can be occupied by at most one child.
We call such a tree a binary tree.

Let TP® be a binary tree of size n that has ng,ni,ns nodes of degree 0, 1,2
respectively, where ng+nq+ne = n. Let T, be T,'fi“ with the difference between left
and right children being forgotten. We have P {7P" = TPin|TeW = T,,} = 1/2™1,
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since there are in total 2™ ways to label the n, degree-one nodes of T;,. Therefore
P {7:lbin _ Tgin} =P {Ebin _ TTII)in|7;ng _ Tn} P {ng _ Tn}
S P (T8 = T,)
=P Tbln _ Tbln Tgw _ Tn n
0 = T = e =)

11 1 B 1
2 gy P{Te = n} 4P (T = n}

In other words, as is well-known from the connection between simply generated
trees and Galton-Watson trees of size n, see, e.g., Janson (2012, pp. 132), T,P™" is
uniformly distributed among all binary trees of size n.

Thus our analysis of maximum r-ary fringe subtree in 7,8% can be easily adapted
to uniform random binary trees. For example, an argument similar to Lemma 4.3
shows that the maximum one-ary fringe subtree (chain) in 7P that consists of
only left children has length about log, n.

4.3. All possible fringe subtrees. Recall that T;r i denotes the set of all possible trees
of size at most k, i.e.,

L, ={TeT:|T|<kP{T® =T} > 0}.
Also recall that
K, = max{k : i;k C Upersw {ﬁg;"’}}
We would like to study the growth of K,, with n.
Let Ge(p) denote Geometric p distribution, i.e., P {Ge(p) =i} = p(1 — p)* for
i € No. Let Be(p) denote Bernoulli p distribution and let Bi(d, p) denote Binomial
(d,p) distribution. Recall that Po()) is a Poisson(A) random variable. Table 4.1

shows five types of well-known conditional Galton-Watson trees. See Janson (2012,
sec. 10) for more examples.

Name Definition
Plane trees ¢E Ge(1/2) pi=1/201 (i >=0)
Full binary trees fé 2Be(1/2) po=p2 =1/2
Motzkin trees | £ uniform in {0,1,2} pg=p; =p2 =1/3
d-ary trees | € £ Bi(d, 1/d) pi= ()= HT (0<i<a)
Labeled trees | £ £ Po(1) pi = e 1/il

TABLE 4.1. Some well-known conditional Galton-Watson trees.

We can assume that P {|78%| =k,} > 0 for all n € N. Otherwise, let k], =
max{i < ky, : P{|7T8%| =4} > 0}. It is not difficult to show that k, — k], < h = O(1)
for k,, large. (See Janson, 2012, lem. 12.3 for details.) Thus this assumption does
not change results in this subsection.

Janson (2012, thm. 7.12) showed that 7,2y < Te%_ In other words, fringe sub-
trees on average behave like unconditional Galton-Watson trees. Let T,:“i“ be a
tree T'e T2, that minimizes P {78" = T'}. Then T™™ also is the least likely tree
to appear in T,8% as fringe subtree among all trees in T, when n is large. So
intuitively if whp 7/™i" appears in T,8%, then every tree in 52 & should also appears
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whp. And if whp Té“in does not appear, then whp there is at least one tree in T;r &
that is missing. Therefore, the problem can be reduced to finding
Pt =P {78 =T™"} = min P{78" =T}.
Text,

Lemma 4.4. Assume Condition A. If k, — o and np};:lm/kn — o0, then whp
every tree in T; k, appears in T,

Proof: Let k = k,. Recall that pmax = max;>op; and pmax < 1. Therefore
pmin < pk o« Thus we can assume that k& < 2log(n)/log(pmax) When k is large.
Otherwise we have npg‘i“ < n~! — 0, which contradicts the assumption.

Thus by Theorem 1.4, Ng, (T,8%) > y, = [$nP {T8" = |k[}] whp. Let A, be
the event that 78" contains all possible trees of size k as fringe subtrees. Let B, (4)

be the event that N, (78%) = i for given ¢ > y,,. Thus
P{Au} = P{Ay 0 [N5 (TEY) <yul} + 3 P{AulBu(i)} P{Ba(i)}

> P {An|Bu(yn)} 3 P{Ba(i)},

=P {An|Bn(yn)} (1 - 0(1))7

where the inequality comes from the obvious fact that P {A,|By(a)} = P {A,|B, ()}
given that a > b. So it suffices to prove that P {AS|B,(y,)} — 0.

This is in fact equivalent to a coupon collector problem. Let 78%|B,,(y,) be 7,8%
restricted to the event B,,(y,,). Let T* be arandom tree distributed as 7,8%|B,, (y»).
Replace each of its y,, subtrees with an independent copy of 7,#". By Lemma 3.4,
the result is still a random tree distributed as 7,8V | By, (yn)-

So P{A,|B,(y»)} equals the probability of that y,, independent copies of T,2%
contain every tree in Tz - 1t follows from Lemma 4.1 (the coupon collector) that

P {AmBn(yn)} < Z (1 -P {ngw = T})y" < Z exp {,ynp {ngw _ T}}

Tefgk Tett,
1 P{T&" =T}
< P TEY LV =
) exp{ 5 P AT k}P{ITgW—k}}
TeTs,

<O(ITL, ) exp {—np™} .

It is well-known that the number of plane trees of size exactly k is 4*~1/v/7k3(1 +
0(1)). See, e.g., Flajolet and Sedgewick (2009, pp. 406). It follows that there exists
a constant C' such that |TL,] < 2521 C47~1 < C4F for all k € N. Thus for large
enough k, the last expression above is at most

C4* exp {—np}cni“} = Cexp {klog(4) — npkmi“} — 0.

Therefore we have P {AS|B,(y,)} — 0. O

Theorem 4.5. Assume Condition A. Assume that as k — o0,
log(1/pf™) ~ vk (log k)”,

where a = 1, B = 0, v > 0 are constants. Let k, — o0 be a sequence of positive
integers. Let m = logn. Then for all constants § > 0, we have:
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(i) If kn < (1 — 8)[m/y(logm )81V then whp TEY contains all trees in
‘Izkn as fringe subtrees.

(ii) If ky = (1+6)[m/y(logm *)P1Y then whp TEY does not contain all trees
n ‘Iz k, @S fringe subtrees.

As a result,

K, » (OMB)”“
(logn/(loglogn)®)* ~ \ v/

min

The behavior of pp™ varies for different offspring distributions. But as men-

tioned in the introduction, the types of trees that we are interested in all have p};’“i“

that are covered by Theorem 4.5.

Proof: Let k = k,,. Part (i) assumes that

1/c
m
<(1-0|——" 1 .
bl 5)[v(logm1/“)ﬁ]

Taking a logarithm, we have

1 m - 1/04
Thus
o 1-0)*m o o
log ——— ~ vk*(log k)P < (v + 0(1))(7)1@[5(10gm1/ )P~ (1—=08)m.
fh 7(log m'/*)

Therefore, recalling m = logn,

min

log npp™™ = m — log

>m—(1+0(1))(1 - 6)%m = Qm).

pznin
It follows that
log k — log np™™ = O (logm) — Q(m) — —oo.

Thus npkmin /k — oo and it follows from Lemma 4.4 that whp 78" contains every
tree in ‘Iik as a fringe subtree.

Similar computations show that if k& > (1+3)[m/y(log m/®)#]V/* then npPin —
0. It follows from Theorem 1.3 that Npmn(75%) £0. Thus whp 7,8 does not

contain every tree in TL x as a fringe subtree. (]

Remark 4.6. The above coupon collector approach can be also used for studying
the sufficient conditions for 782%™ to contain all r-ary trees of size k (not necessarily
complete). We can think of these r-ary trees as types of coupon that we need to
collect and Ng, (T#"™) as the number of draws of coupons that we are allow to
carry out.

The rest of this section is organized as follows. In the next subsection, we give
a general method of finding pi*™. Then we divide offspring distributions in two
categories and show that Theorem 4.5 is applicable to all the Galton-Watson trees

listed in Table 4.1.
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4.3.1. Computing p}g’in. Let Z, .= {j : 1 < j < k,p; > 0}. Let Ly := po and for

k=2 let
N Vi
Ly = min {po (pl> :ieIk_l}.
Po

Since Ly, is non-increasing, L := limy_,o Ly exists. Equivalently, we have

Y
L:=inf{p0 <pl> :ieN,pi>O}.
bo

Theorem 4.7. Assume Condition A. We have (pP™)YF — [ as k — oo, where
the limit is taken along the subsequence k with P {|T&%| =k} > 0. As a result, we
have L < 1.

In fact, we have a stronger result for the upper bound of (pkmi“)l/ k.

Lemma 4.8. Assume Condition A. For all fized i with p; > 0, there exist constants
C; > 1 and C},C!, k(i) > 0 such that for all k = k(i) with P{|T8%| = k} > 0, there
are at least k=CiCF trees T of size k with
<Pi ) 1/1‘]
Po | —
Po

Proof: We give a proof assuming that there exists a j such that p; > 0 and that ¢
and j are coprime. The proof of the general case is similar. Let z = (k — 1) mod 1.
By the Chinese reminder theorem, there exists a smallest non-negative integer y
such that

k
0<P{T8 =T} <Y

{y =z (mod ),

y=0 (mod j).
Note that y depends only on i. Therefore, if k& > k(i) :== y + 1, we can choose
_ Yy k—=1-y
no—k—ni—nj, nj—j, ni—f,

such that ng,n;,n; are all non-negative integers with
no +n; +n; =k, and in; +jn; =k —1.

Let Ty (no,ni,nj) be the set of plane trees of size k that has ng, n; and n; nodes
with degree 0, ¢ and j respectively. It is well-known that when the above two
conditions hold, we have
1 k 1 k!

Trk(no,ng,nj)| == — = )

| k( 0, J)‘ k (no,ni,nj> kno'm'nj'
(See Flajolet and Sedgewick, 2009, pp. 194.) Since 4 is a constant and y only
depends on i, there exists a constant C}* such that

Ino — k(1 —1/i)| < CF, |n; — k/i| < CF, n; < Cf.
Using these inequalities and Stirling’s approximation (Flajolet and Sedgewick, 2009,
pp. 407), it is easy to verify that there exists a constant C} > 0 such that

. N —k
o 1 1/i 1 1-1/i .
[Tk (no, i, my)| = k77 A 1—2 =k""iC}.
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And for every T € S(ng,n;,n;), we have

o _ Nk

PTEY = T} <plp” <, w0l 'y = CF | wo (Z) S
Proof of Theorem 4.7: Let T be a tree with |T| = k and P{7T8Y =T} > 0, i.e,
T e T;k. Let n; be the number of nodes of degree ¢ in T. Note that if ¢ > 0 and

i ¢ Ti—1, then n; = 0. Since by (2.1) the sum of the degrees in a preorder degree
sequence equals the size of the tree minus one, we have

ngo+ny+...ng_1=~k, and n1+2n2...+(k71)nk_1=k71.
Using the convention that 0° = 1, we have for k > 2

P{TEY =T} = pg°pt" - p5'

ni ng MNk—1
_ o notnit...+tng_1 D1 b2 Pk—1
Po Po Po
1qin; 13 ing
=5 [] [<pi) 1 >p§[.min <m) 1
) Po 1€Zr—1 \ PO
€Lk 1

=poly " = polF . (4.1)

As a result liminfy,_,,, (pPin)V/F > L.

To show the other way, let € > 0 be a constant, and let « = min{i : L; 11 < L+¢}.
Therefore 0 < po(pa/po)/® < L + ¢. By Lemma 4.8, there is at least one tree T of
size k such that

1

1k
pRin < P{TEY =T} < C, [po (?) ] < Co(L +2)F,
0

min

where C, > 0 is constant. Thus limsup,_, ., (py )Wk < L +¢. Since ¢ is arbitrary,
we have limsup,,_, ., (p™)/* < L.

Recall that pmax = max;>op; < 1. For all trees T" with size k, we have
P{TeY =T} < pfnax? Le., (pznin)l/k: < Pmax- Thus L = limg_,o (pkmin)l/k <
Pmax < 1. O

4.3.2. When L > 0. If L > 0, then by Theorem 4.7, log(1/(pf*®)/*) ~ log(1/L)k =
log(1/L)k(log k)°. Thus we can apply Theorem 4.5 with v = log(1/L), a = 1 and
B =0 to get
K, » 1
log(n) ~ log (1/Z)’
The following Lemma computes L for some well-known Galton-Watson trees. See
Janson (2012, sec. 10) for more about these trees.

Lemma 4.9. (i) Full binary tree: If & £9 Be(1/2), then L = 1/2. (ii) Motzkin tree:
If po = p1 = pa = 1/3, then L = 1/3. (iii) d-ary tree: Iffé Bi(d, 1/d) for d = 2,
then L = (d —1)4=1/d?. (iv) Plane tree: Iffé Ge(1/2), then L = 1/4.
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Proof: (i): If £ ~ 2Be(1/2), then pg = 1/2, po = 1/2 and p; = 0 for i ¢ {0,2}. Thus
for k > 3, we have

N\ Vi 1/2
Liy= min pg (pz) = po <p2) =1/2.
i:i<k,p; >0 Po Po

Therefore L = limg_,o, Lr = 1/2. (ii) and (iii) follow from similar simple calcula-
tions.
(iv): For all ¢ = 1, we have

1/ 1/i
Pi 171
— =—(= =1/4.
po <P0> 2 <2’> /

Therefore Ly, = 1/4 for all k > 1, and L = 1/4. O

Define

min{i e N: L;y; = L} if L; = L for some j,
,{'/ —
9] otherwise.

If k < o0, then we call the Galton-Watson tree well-behaved. Examples of such trees
include those for which £ is bounded, and those for which £ has a polynomial or sub-

exponential tail. The case £ £ Ge(1/2) is also well-behaved. Thus the four types of
Galton-Watson trees in Lemma 4.9 are well-behaved. The following theorem gives
better thresholds than Theorem 4.5.

Theorem 4.10. Assume Condition A and let the Galton-Watson tree be well-
behaved. Then for all constants § > 0, we have:
(i) If ky < (logn — (1 + 0)loglogn)/log +, then whp TEY contains all trees in
‘Ezkn as fringe subtrees.
(ii) If kn, = (logn — (1 —6)loglogn)/log +, then whp TE does not contain all
trees in S;’kn as fringe subtrees.

Thus as n — o0, we have

K, log(1/L) —logn »
loglogn

— 1.

Remark 4.11. As can be seen from the proof of Lemma 4.8, among well-behaved
Galton-Watson trees of size k,,, the least possible are those contain maximal number
of degree k nodes. These are the trees that do not appear in case (ii).

The main idea is that when x < o0, there are exponentially many trees of size k
that have small probability to appear as fringe subtrees in 7,8%. Then we can use
Lemma 4.1 (the coupon collector) to find the sufficient condition for one of them
to not to appear whp.

Proof: (i): Write m = logn and k = k,. Using (4.1), it is easy to verify that in
this case np™i /k — oo, Thus (i) follows from Lemma 4.4.

(ii): The proof is similar to the one of Lemma 4.4. As in that proof, we
can assume that k& = O(logn). Thus by Theorem 1.4, whp Nz, (7.8%) < y, =
[3nP {|T8%| = k}]. Let A, be the event that 7,8" contains all possible trees of size
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k as fringe subtrees. Let B, (i) be the event that Ng, (78%) = ¢ for some i < yp,.
Then

P{An} < P{Nz, (TEY) > yn} + 3 P{An|Ba(i)} P {Bu(0)}
< o(1) + P {An|Bu(yn)} 3, P{Ba(i)},

<o(1) + P{A,|Bn(yn)}.

Thus it suffices to prove that P {4, |B,(yn)} — 0.

Using the same coupling as in the proof of Lemma 4.4, we have P {A,|B, (yn)}
equals the probability that y, independent copies of 7,2% do not contains all trees
in TL,. It follows from Lemma 4.1 (the coupon collector) that P {A,|B,(yn)} — 0
if ZTGTL‘ (1—P{TE"Y =T})¥ goes to infinity.

By definition of &, we have L = po(px/po)"/*. Tt follows from Lemma 4.8 that

there exists constants C, > 1 and C”,, C” > 0 such that there are at least k=CrC¥
trees T in T2, with

oy PATE =T} _ oo/ oot

W _ I O = u

A A e I o e B s
Therefore

, C//Lk Yn
1—P{TEY =T} > k9 CF (1 — 2 > .
PGS R

Since L < 1 and P {|78%| =k} = ©(k~%?2), we have L¥/P{|T8%| =k} = o(1).
Thus for k large enough, the logarithm of the above is

, C//Lk:
k) n 1 -t
klog(Cy) — C}. log(k) + yn log ( B {Tew| = k})
1 C//Lk
> —k1 ) — nﬁi
1
> %klog(Cﬁ) - gnCZLk = Sklog(Cx) - O(nL").

By our assumptions, k = Q(logn) and L* < (logn)'=%/n. Since C,; > 0, we have

1-96
%klog(cﬂ) — O(nL¥) = Q(logn) — 0<n(logz)> -,

which implies P {4, |B,,(y,)} — 0. O
Remark 4.12. If L > 0 and k = o0, then Theorem 4.5 shows that
Ko/ 1og(n) 1/ log(1/L).

But the second order term of K, is sensitive to small modifications of the offspring
distribution, which makes it slightly more challenging to analyze the second order
term.
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4.3.3. When L = 0. It is clear that L = 0 if and only if ¢ has infinite support
and liminf; o, po(pi/po)** = 0, which implies limsup, .. log(1/p;)/i = oo, along
the subsequence with p; > 0. If in addition we have p; > 0 for all i > 0 and
log(1/p;) ~ f(3) for some f :[0,00) — [0,00) with f(¢)/i 1 oo, then we say that &
has an f-super-exponential tail. We have the following threshold for Galton-Watson
trees with such a property.

Theorem 4.13. Assume Condition A and let & have an f-super-exponential tail.
Let f~! denote the inverse of f. Then for all constants 6 > 0, we have
(1) If kn < f71((1 = 0)logn) + 1, then whp TEY contains all trees in TL, as
fringe subtrees.
(2) If ky, = f71((1 + 6) logn) + 1, then whp TEY does not contain all trees in
‘Z;’kn as fringe subtrees.

Therefore,
KTL p

T logm)
Proof: (i): Let k = k,,. Choose € > 0 such that (1 —d)(1 +¢) < (1 —§/2). Since
log(1/p;) ~ f(i), there exists an integer i(e) such that for all ¢ > i(e),
logp; = —(1+¢/2)f(i).
Let w; == log po(pi/po)'/*. We have as k — o0,

1 log p;
min w; = min {(1 - ) log(po) + o8P }
i i

i)=ic<k | i(e)<i<k
> log(pg) — max M
i(e)<i<k i
14+¢/2)f(k—1

where we use that f(7)/i 1 00. Since min;<;<;(-) w; is a constant, we have for large
k,

. 1+¢/2)f(k—1
o = i, > o) — (S

It follows from (4.1) that for k large enough,

log pi™™ > log(poLy, ™)
> log(po) + (k —1)logpo — (1 +¢/2)f(k — 1).
=>—(1+¢)f(k—-1),
where the last step uses f(k)/k 1 o0.
The assumption k — 1 < f~1((1 — 6) logn) implies that f(k —1) < (1 — §)logn
and k£ = O(logn). Thus

log pi™ > —(1 4 ¢)(1 — &) logn = —(1 — 6/2) logn.

Thus npPin > n%/2. We have np™in /k — oo, It follows from Lemma 4.4 that 7,8%
contains all possible trees of size at most k as fringe subtree whp.

(ii): Let TE%a" be the tree in which one node has degree k—1 and all other nodes
are leaves. Computations similar to above show that if k —1 > f~1((1 + §) logn),
then nm(TF3r) — 0. Therefore 78" does not contain T5%3" whp. O
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Ezample 4.14 (The discrete Gaussian distribution). When p; = ce=<'"" for some
appropriate positive normalization constants ¢ and ¢/, we have L = 0, and Theo-
rem 4.13 applies. Then

K, 1

log(n) V¢

as n — 0.

Ezample 4.15 (The Cayley trees). A better example is the Galton-Watson tree
with offspring distribution {é Po(1), i.e., the Cayley tree. It has p; = e~ !/i! and
log(1/p;) ~ ilog(i). It is easy to see that
K, loglogn 74
logn '
Using (4.1) it is not difficult to verify that the tail drops so fast that the least

possible tree of size k is T:a*. This is a special case of the following general
observation.

Lemma 4.16. Assume Condition A. If p; > 0 for alli = 0 and pi/i 1 0, then for k

large enough, pp"* = P {Tgw = T,jfalr} = pg_lpk_l. In particular, this is true for
¢E Po(1). In the latter case we have

log pi™ = log(ph~'pr—1) = —klog k(1 + O(1/k)).

5. Non-fringe subtrees

In this section we prove Theorem 1.6, the concentration of non-fringe subtree
counts in conditional Galton-Watson trees.

Given a tree T, let v(T) be the number of its internal nodes and let ¢(T") be
the number of its leaves. Recall that NBf(T8W) := Dwerew [T < TEY], and that

gn = (E;*, . ,ENE) is a uniform random rotation of the preorder degree sequence of
T,

To simplify the notation, write v := v(T') and ¢ := ¢(T). By Lemma 2.1, T has
a preorder degree sequence of the form

(a1307a2707 .. '7a€70) =

(al,lv a1,2,---,01 (1), 0, 2,1, 02,2, - -+, A2 r(2), 0,... y A0, 15, 02,25 - -+ 5 Ap r(4), 0)
for non-negative integers r(1),7(2),...,7r(¢) and that
¢
a =Y
1 s=1

Therefore, if T'< T, then T’ has a preorder degree sequence of the form

(a1,b1,a2,bs,...,a¢,by) (5.3)

¢ r(s

)
ast =v+£{—1. (5.2)
=1

¢
Z r(s) = v, asy >0,
s=1 s

where by, ..., by are preorder degree sequences of some plane trees. Thus each non-
fringe subtree of shape T in 72" corresponds to a segment of 5“ of the form of
(5.3). If none of the segments overlap with each other, then we can permute them
into the form (a1, ...,as b1,...,by). Recall that 5“ is permutation invariant, i.e., if
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we permute En, the result has the same distribution as E“. Thus N2 (78%) should
be almost distributed like the number of the patterns (aj, as,...,ar) in E“.

The problem with this argument is that non-fringe subtrees can overlap. But
as shown later in this section, under the assumptions of Theorem 1.6, the effect of
such overlaps is negligible.

We will use D,, to denote the set of preorder degree sequences of trees with size n.
Let 57, be the set of sequences that are cyclic rotations of sequences in D,,. Given
d:=(dy,...,dn) € Dy, let deg;(d) := (di,dit1, . ..,disr_1) such that deg,(d) € Dy,
for some k > 1, where the indices are all modulo n. Lemma 2.1 guarantees that
such deg;(d) exists and is unambiguous. Let T;(d) be the tree with the preorder
degree sequence deg;(d).

5.1. Factorial moments. Let (z), == x(x —1)---(x —r+1). For a random variable
X, E(X), is called the r-th factorial moment of X. We give exact formulas for the
first and second factorial moments of N2f(T78W) in this subsection.

Lemma 5.1. Assume that P{|78Y| =n} > 0. Let T be a tree. We have

ELNFTEN] _ ot gy P ASnmuiry =n = olT) — AT}
n P{Sn =7’L*1}

Proof: Let v := v(T) and € := ((T). Let I; = [T <T;(€)]. Then NRf(TEY) =
>, I. By the permutation invariance of £, we have

E [Njf}f(frngw)] =E li Ii] =nP{l; =1}.

Recall that T has a preorder degree sequence of the form (aq,0,...,ay,0) sat-
isfying (5.2). Let A < D,, be the set of sequences such that 5“ € A if and only
if 1 = 1. In other words, d := (d1,ds,...,d,) € A if and only if deg,(d) =
(a1,b1,...,ap,by) for some by, ..., b, which are preorder degree sequences of trees.
By permuting deg,(d) into (a1, as,...,asb1,ba,...,by), we get a new sequence
d = (d|,d,...,d,) e A where

~

A = {(el,eg,...,en)eDn (e1,€2,...,6y) = ((11,(12,...,(14)}.

Such a permutation defines a mapping f : A — A’

For every d’ € A’, condition (5.2) implies that in d’ after (a, ..., as), there are at
least ¢ consecutive segments that are preorder degree sequences of trees, i.e., there
is a unique d € A with f(d) = d’. Thus f is a one-to-one mapping. If d’' = f(d),
then P {én = d} =P {5“ = d’} , since §“ is permutation invariant. Therefore we

have

P{11:1}:P{,§"e,4}:P{éﬂeA’}.
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Recall that by Lemma 2.3, £° ~ (&1,...,&n|Sn = n — 1), where &;,...,&, are
i.i.d. copies of £ and S,, = >I_, &. We have

P{gnca}-P{@.& .8 = (a0 a)f
_ P{(fl,fg,...7fq,) = (0,1,(12,...7ag),5n =n71}
P{S,=n—-1}
P{Sh—v=n—v—1{}
— gw
P{T' <78} P(S, —n_1]
where in the last step we use Zi=1 a;=v+0—1. O

To compute E(NR(T8Y)),, we enumerate all the cases that T can appear as
overlapping non-fringe subtrees by constructing a set of trees {T HT} as follows.
For trees T, S and node v € T, let T = Splay (T, v, S) denote tree T with subtree
T, replaced by S. Thus T, = S . Let V(T') denote the internal nodes of T". Then
define the collection

{TT} = U {SplaY(Ta’UvT)} \{T}

veV(T):T, <T

Note that [{THT}| < v(T). Also note that given 77 € {T'HT} we can always find
a unique node v € V(T') such that T' = Splay(T,v,T).

Lemma 5.2. Assume that P {|T8"| =n} > 0. Let T be a tree. We have
E[(NE(TEY))2] = n(n — 20(T) + )7 (T)*
y P {Sn72v(T) =n+1-— 2(U(T) + K(T))}

P{S,=n—1}
P{S _ory =n—v(T') — K(T’)}
2 nf T/ n 'U( ) .
Tan Z ™ (T) P{S,=n—1}
T'e{THT}
Proof: Let v =o(T) and £ = £(T'). Let I; be defined as in the proof of Lemma 5.1.
Since I1,..., I, are indicator random variables and permutation invariant, we have

E[(NF(TE" )] = >, ElLL]=n) E[LL].
1<i#j<n i=2
The event I1I; = 1 happens if and only if T<T1(£~“) and T<TZ-(£~“) both
happen. Thus instead of summing E [I1];] over i, we can sum P {g“ = d} over
pairs (i,d) € {2,...,n} x D, that satisfy T < Ty (d) and T < Ty(d), i.e.,
deg,(d) = (a1,b1,a2,bs,...,as,by), and deg,;(d) = (a1,b],as,bs,... ,a.b)),

where (a1,0,...,ay,0) is the preorder degree sequence of T and by, b}, ..., b, b
are preorder degree sequences of trees. Let A be the set of such pairs. Then

Zi>2 E[LL] = Z(i,d)eA P {én = d}'
For 1 < r < n, let Z,.(d) be the set of positions in d that are occupied by deg,.(d),
ie.,
Z,(d) ={jmodn:r<j<r+]|deg,.(d)}.
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Let Zin(d) < Z;(d) be the set of positions in d that are occupied by the parts of
deg, (d) that correspond to ai,...,a,. Let I?9t(d) = Z;(d)\Zi*(d). Define Z:*(d)
and Z?"*(d) accordingly. Let A’ = A be the set of (i,d) in A such that
A ={(i,d) e A: T{*(d) n T (d) = &} .

Let A" := A\A'.

If (i,d) € A”, then Ti*(d) n Zi*(d) # . In other words, either T; is fringe
subtree of T7 and T; is rooted at a node that corresponds to an internal node of
T (regarding that T is a non-fringe subtree of the shape T'), or vice versa. Thus

there exists a 7" € {THT} such that either 7" < Ty (d) or T’ < T;(d). By symmetry,
we have

Y op{en—al=2 Y p{r<n@m)

(i,d)e.A” T'e{THET}
n P Snfv Ty =N — U(T/) B K(T/)
=2 > () { <P>{S m— }, (5.4)
T'e{THT} n

where the last step follows from Lemma 5.1.

Now consider (4, (d1,...,d,)) € A’. Arrange (dy,...,d,) in a cycle. Paint the
segment deg; ((dy,...,dy)) red and the segment deg;((dy,...,d,)) blue. One of the
three cases must be true: (i) Z;(d) n Z;(d) = & — The red segment and the blue
segment do not overlap. (ii) Z;(d) < Z;(d) — The red segment contains the blue
segment. (iii) Zy(d) < Z;(d) — The blue segment contains the red segment. (Since
deg, (d) and deg,(d) are both preorder degree sequences, if 71 (d) N Z;(d) # ¢ then
either (ii) or (iii) must happen. And since i # 1 we cannot have Z;(d) = Z;(d).)
Figure 5.2 gives examples of the three cases.

Ty

Ty

() (i) (i)

FIGURE 5.2. Examples of three cases in A”.

We permute (dy,...,d,) as follows. For (i) and (ii), we first permute the red
segment from (a1,b1,...,a¢, b)) to (a1,...,ae,b1,...,bp). Then we permute the
blue segment of from (a1,b},...,a¢, b)) to (a1,...,a,,b},...,b)). It is clear this
can be done in case (i). And it is not difficult to see that in case (ii) the positions
that are occupied by the blue segment is completely contained by the positions that
are occupied by by for some 1 < ¢/ < £. This means that T; is a fringe subtree of
T; and the root of T; does not correspond to an internal node of T' (regarding that
T3 is a non-fringe subtree in the shape of T'). So the first step of the permutation
moves the blue segment but does not change its contents and we can carry out the
second step without problem.
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In case (iii), we reverse the order of the two steps. After this the starting position
of the red segment may have changed. We rotate the new sequence such that the
red segment still starts from position 1.

In the end, we get a new pair (¢/,(d,...,d))) such that (dj,d5,...,d)) =
(a1, ap) and (&, dy,yyooydiyy 1) = (an,...,aq). Let BE {v+1,...,n} xD,
be the set of such pairs. The above permutation defines a mapping f : A" — B.
Since given (i',d’) € B, we can without ambiguity recover the red segment and blue
segment of d’, the mapping is reversible, i.e., f is one-to-one. Since £~“ is permuta-

tion invariant, if (¢/,d’) = f(i,d), then P {En = d} =P {g’“ = d/}. Therefore

>, pl{ér—d}- Y p{é"-a}.

(i,d)e A’ (i,d)eB
Given (i,(dy,...,d,)) € B, we can move the segment (d;,...,d;+,—1) to the
position v + 1 to get a new sequence (d},...,d,) € C, where

C:= {(61,...,6n)€57L2(61,...,621,) = (al,...,ag,al,...,ag)}.

Since there are n—2v+1 possible values of 7, this permutation gives us a (n—2v+1)-
to-one mapping h : B — C and if d’ = h(i,d), then P {g“ = d} =P {g“ = d’}.
We obtain as usual

ZP{§n=d} =P{(g{‘,...7§~§’v) = (al,...,ag7a1,...7a1g)}

deC
=P{(&,..., &) =(a1,...,ap,a1,...,a¢) | S, =n—1}
:P{(£17--~7£2v) = (al,...,ag,al,...,ag)}
§ P{Sn—2o=(n—1)—2(v+£-1)}

P{S,=n—1}
n P{Sh_2o =n+1-—2(v+4)}
=T (T)? P{S,=n—1} '

It follows that

3 P{E“=d}= 3 P{En=d}=(n—2v+1)ZP{€“=d}

(i,d)e A’ (i’,d)eB deC
P{Sph—2o =n+1-—2(v+{)}
_ _ 1 nf 2 . .
(n—2v+1)7™(T) Sy F— (5.5)
The lemma follows by combining (5.4) and (5.5) with the following:
E(NF(TE")2 =n Y E[LL]=n > P {5“ - d,}
i=2 (i,d)e A
=n Z P{g“:d}—kn Z P{g“:d}. [l
(i,d)e A’ (i,d)e A"

5.2. Sequence of non-fringe subtrees. Let T,, be a sequence of trees. Let v, :== v(T},)
and ¢, = {(T,). In this subsection we prove Theorem 1.6, the concentration of
NPE(TEY).



606 X. S. Cai and L. Devroye

Lemma 5.3. Assume Condition A. If |T,| = o(n), then
eI
nmof (T,) '

Proof: |T,| = o(n) implies that v, = o(n) and ¢, = o(n). Therefore it follows
Lemma 2.6 and 5.1 that

E [N%l:(ﬁzgvv)] B P {Sn—vn =N —Vp — én} .

= 1 O
nmf(T),) P{S, =n—1}
Lemma 5.4. Assume Condition A. If |T,| = o(n) and nt™¥(T},) — o, then
ENVE(TE )
(nm(T))? '

Proof: Let v = vy, £ = ¢, and T = T,,. Since |T},| = v + ¢, we have v = o(n)
and £ = o(n). If T € {TET}, then v(T’) < 2v = o(n) and {(T") < 2¢ = o(n).
Therefore, it follows from Lemma 2.6 and 5.2 that
oP{Sh—2v =n+1-2(v+¢)}
P{S,=n—1}
P {Snfv(T/) =n— ’U(T’) - K(T/)}
P{S, =n—1}

E(NEH(TEY))y = n(n — 2v + 1)a™(T)

+on Y wN(T)
T'e{THT}
= (1+o(L)(na™ (1) +O(n) >, =H(T").

T'e{THT}

Thus it suffices to show that 13 7crgr 7 (T") = o(nm™(T))2.

Consider the superset A of {T HT?} that contains trees which can be obtained
by replacing a proper non-leaf subtree of T" with another copy of T. (We do not
restrict where this replacement can happen as in the definition of {T'EHT}.) Note
that |A| = v — 1, since T has v internal nodes and one of them is the root.

If T" € A, then T’ contains T as a fringe subtree. Thus 77f(7") < #™(7T). In
the case that v is bounded, we have

n Z P{T' <T&"} < nor™(T) = O(ne™(T)) = o(na™(T))>.
T'e A
Thus we can assume that v — c0.
For T" € A, if T” has at least 3v/2 internal nodes, call T big, otherwise call it
small. Let Ap and Ag be the sets of big and small trees in A respectively.
If T" € Ay, then besides internal nodes that correspond to internal nodes of T', T’

contains at least v/2 extra internal nodes. So we have P {T" < T8V} < 7°f (T)pvm/ix.

Since v — 00 and Pmax < 1, Vpohax = o(1). Using that |A| < v, we have
n 2 P{T' <T&"} < nur™(T)pl2, = o(nm™(T)).
T'eAp

Let T; ; be a fringe subtree in 7" whose root is at depth ¢ and is the j-th node of
this level. If replacing T; ; with a copy of T' makes a new tree T that has strictly
less than 3v/2 internal nodes, then 7; ; must contain more than v/2 internal nodes.
Therefore, for each i, there is at most one possible such j. For an example of T7,
see Figure 5.3.
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T T
T2 T

’

FIGURE 5.3. An example of 77 for T with 7 internal nodes.

As T has v internal nodes, there are at most v — 1 possible 7 that can make T; ;
a proper and non-leaf subtree. Since T has at least ¢ internal nodes besides these
in the copy of T that replaced T; ;, we have 7% (T7) < 7™ (T)pi .. In summary,
we have

n Y ) <0 Y AT < 0 ) (T)phn < Onn™ (7).

T'eAs i=1
Therefore,
no Y P{T'<TE}<n Y P{T'<T®}+n ) P{T'<TE"}
T'e{TET} T'e Ay T'eA,

= o(nm™(T)) + O(nw™(T)) = o(nz™ (T))%. O
The condition that nm™f(T},) — o is necessary, as shown by the following lemma.
Lemma 5.5. Assume Condition A. Let Ly, be a chain (complete 1-ary tree) of
height h(n). Let X,, = NIX}:(n) (7.8%). IfnP {Lh(n) < Tgw} — € (0,00) as n — o,
then
1+,
L—p’
As a result, liminf, o dry (X,,Po(u)) > 0.

3p? +2p; +1
(1—p1)?

EX, — pu, Var (X,,) — u E[(Xn—EXn)?)]—»,u

Proof: Let h = h(n). Since nP{L, <T8&%} = npht — p € (0,0), we have h =

logy,, n + O(1). Lj has h internal nodes and one leaf. Thus it follows from

Lemma 5.1 and 2.6 that

P{Sn,h =n—h—1}
P{S,=n—1}

Since {Lp ® Lp} = {Lp4i : 1 <i < h—1}, by Lemma 2.6,

P {Sn—'u(T/) =n — ’U(T/) — K(T/)}
¢ =2n Z ™ (T") —
T'e{Lr®Ly} P {Sn - 1}
h—1 .
P{Sp—h—i=n—h—i—1}
— 2 nf L .
nZw (Lh+i) P{S, —n—1]

i=1

EX, = naf (L)

L.

h—1 h—1

i i P1
= (L+o(1)2n 3 pi™" = (1+0(1)2np] ) 1 — 2u7— -
i=1 i=1
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We also have by Lemma 2.6,

P{Sn—2n = 1-2(h+1

Therefore, it follows from Lemma 5.2 that

E(Xpn)2=C + G — 2p7 Pl
— Db
Thus 1
_|_
Var (X,,) = E[(X,,)2] + E[X,,] — E[X,]* — 1y _z;
So we have

Var (X,,) 1+ py
E [Xn] 1- P1

With an argument similar to Lemma 5.2, we can compute E [(X,)3], which yields

> 1.

3p? +2p1 + 1
E[(X. —EX,)*] — “21—7;01)2
Since
E[IX, — EX,*] = 2E[|X, — EX,|* x [X, <EX,]] + E[(X, — EX,,)?]
<2(EX,)* + E[(X, —EX,)%],
the above limit implies that

C = limsupE [|X,, — EX,|*] < 0.

n—0o0
Now we can finish by following the method of Barbour et al. (1992, thm. 3B).

Let Z,, £ Po(EX,,) be a coupling of X, that minimizes P {Z,, # X,,}. Therefore we
have drv (X, Po(EX,,)) = P{Z, # X,}. Thus

Var (X,,) — E[X,] = E[(X, —EX,)?] — E[(Z, — EX,,)?]
=E[[(Xn —EX,)” — (Z, — EX,)?] x [ X, # Z,]]
<E[(Xn —EX,)? x [X,, # Z,]]
< P(X, # Z,) P (E[|1 X, — EXa?])?3,
where in the last step we use Holder’s inequality (Gut, 2013, pp. 129). So

Var (X,) —EX, \*
(‘Xn - EXn|3))2/3

drv (X0, POlEX,)) =P (X, £ 2,) > (

Therefore
1 1+, 3
h,?iioroldeV (Xn,Po(EX,)) = o2 <1 —pl) > 0.
Since EX,, — u, we also have liminf,, o drv (X,,Po(u)) > 0. O

Remark 5.6. For the Possion distribution to be a good approximation of a sum of
indicator random variables, it is necessary that these indicators are almost indepen-
dent. But for Lj(y), this is not true—if we find a chain of length h(n) at position
i, then with probability p; we will find another such chain at position 7 + 1. This
explains why Poisson approximation fails in this case.
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Proof of Theorem 1.6: (i): Since |T,| = v, + £, we have v, = o(n) and ¢ =
o(n). So by Lemma 5.3, ENP(TEY) ~ na™(T,). Thus na™(T,) — 0 implies
NP (TE™) 0.

(ii): It follows from Lemma 5.3 and Lemma 5.4 that

Var (NPH(TEY)) = E(NEH(TE™))2 + ENPL(TEY) — (ENEH(TE™))
(1 + o) (na™(T,))* + (1 + o(1)) (7™ (T))
= (14 o(1)) (nm™(Ty,))?

= o(nm™(T5,))* = o(ENE(T,E™))*.

Thus NP (7.8%)/(nm8(T,)) 5 1. O

5.3. Complete r-ary non-fringe subtrees. Theorem 1.6 allows us to find the maximal
complete r-ary non-fringe subtree in 7,8%. We omit the proofs of the following
results due to their similarities to Lemma 4.2 and 4.3:

Lemma 5.7. Assume Condition A and let p, > 0 for somer = 2. Let ﬁn,r be the
height of the mazimal complete r-ary non-fringe subtree in TEY. Then as n — 0,

Hn,r P 1
log, (logn)
Lemma 5.8. Assume Condition A and let py > 0. Let HnJ be the height of the
mazimal chain (complete 1-ary) non-fringe subtree in T.8%Y. Then as n — o,
En,l
log, ), n
Ezample 5.9 (The binary tree). Recall that when py = ps = 1/4 and p; = 1/2, T,8%¥

is equivalent to a uniform random binary tree of size n. It follows from Lemma 5.8
that H, 1/log, n % 1. This result was previously proved by Devroye et al. (1999).

5.

6. Open questions

Part (iv) of Theorem 1.4 shows that dry (N.a, (T,8%),Po(nm(A,))) = o(1), given
that (A, )/7(Tk, ) — 0. We believe this condition may not be necessary. However,
to prove it seems to require a very different method.

Theorem 1.6 shows that if na™(T,,) — oo, then NP (T,gY)/nm™ (T,) 21, We
believe that it is also true that (N2f(TEY) — na™(T,))/y/na™(T,,) converges in
distribution to a standard normal distribution. (Janson, 2016, thm. 1.9 has shown
that this is indeed the case when v(n) is bounded.) As shown in Section 5.2, the
overlapping of subtrees does not affect the second moment of non-fringe subtree
counts much. Thus we may be able to compute high moments in similar ways and
apply Lemma 3.6 to prove a central limit theorem.

Theorem 1.4 generalizes Theorem 1.3 by considering the number of fringe sub-
trees whose shapes belong to a set of trees T instead of being a single tree T,.
It may be possible to generalize Theorem 1.6 in similar way, i.e., we consider the
non-fringe subtrees whose shapes belong to a set of trees Ty, instead of being a
single tree T,.
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Another problem may be of interest is to get a non-fringe version of Theorem
4.5, i.e., what are the sufficient conditions for all (or not all) trees of size at most k
to appear in 7.8% as non-fringe subtrees.

Let T be a tree and v be a node of T'. Recall that T,, denotes the fringe subtree
rooted at v. If by removing some or none the subtrees of T,, we can make it
isomorphic to another tree 7", then we say that T' contains an embedded subtree of
the shape T" at v. A more challenging open question is to determine the size of the
maximum complete r-ary embedded subtree in large conditional Galton-Watson
trees.
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